“Neon lights” is a generic term
for atomic emission involving
various noble gases, mercury,
and phosphor. The UV light
from excited mercury atoms
* causes phosphor-coated
tubes to fluoresce white light
and other colors. The models
. show helium, neon, argon,
and mercury atoms.
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A LOOK AHEAD

We begin by discussing the transition from classical physics to quantum theory. In par-
ticular, we become familiar with properties of waves and electromagnetic radiation and
Planck’s formulation of the quantum theory. (7.1)

Einstein’s explanation of the photoelectric effect is another step toward the development
of the quantum theory. To explain experimental observations, Einstein suggested that
light behaves like a bundle of particles called photons. (7.2)

We then study Bohr’s theory for the emission spectrum of the hydrogen atom. In par-
ticular, Bohr postulated that the energies of an electron in the atom are quantized and
transitions from higher levels to lower ones account for the emission lines. (7.3)

Some of the mysteries of Bohr’s theory are explained by de Broglie, who suggested that
electrons can behave like waves. (7.4)

We see that the early ideas of quantum theory led to a new era in physics called quan-
tum mechanics. The Heisenberg uncertainty principle sets the limits for measurement
of quantum mechanical systems. The Schrodinger wave equation describes the behav-
ior of electrons in atoms and molecules. (7.5)

We learn that there are four quantum numbers to describe an electron in an atom and
the characteristics of orbitals in which the electrons reside. (7.6 and 7.7)

Electron configuration enables us to keep track of the distribution of electrons in an
atom and understand its magnetic properties. (7.8)

Finally, we apply the rules in writing electron configurations to the entire periodic table.
In particular, we group elements according to their outer electron configurations. (7.9)

uantum theory enables us to predict and understand the critical role that electrornis play in

Qchemistry. In one sense, studying atoms amounts to asking the following questions:

1. How many electrons are present in a particular atom?

2. What energies do individual electrons possess?

3. Where in the atom can electrons be found?

The answers to these questions have a direct relationship to the behavior of all substances in
chemical reactions, and the story of the search for answers provides a fascinating backdrop for

our discussion.

%

@ Interactive

Activity Summary
1.

Interactivity: Wavelength,
Freguency, Amplitude (7.1)
Animation: Emission Spectra
(7.3

Interactivity: Orbital Shapes
and Energy (7.7)

. Animation: Electron

Configurations (7.8)

fnteractivity: Pauli Exclusion
Principle (7.8)

interactivity: Orbital Filling
Rules (7.8)
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Figure 7.1 Ocean water waves.

Q‘

Interactivity:
Wavelength, Frequency,
Amplitude

ARIS, Interactives

7.1 From Classical Physics to Quantum Theory

Early attempts by nineteenth-century physicists to understand atoms and molecules
met with only limited success. By assuming that molecules behave like rebounding
balls, physicists were able to predict and explain some macroscopic phenomena, such
as the pressure exerted by a gas. However, this model did not account for the stabil-
ity of molecules; that is, it could not explain the forces that hold atoms together. It
took a long time to realize—and an even longer time to accept—that the properties
of atoms and molecules are not governed by the same physical laws as larger objects.

The new era in physics started in 1900 with a young German physicist named
Max Planck.” While analyzing the data on radiation emitted by solids heated to var-
ious temperatures, Planck discovered that atoms and molecules emit energy only in
certain discrete quantities, or quanta. Physicists had always assumed that energy is
continuous and that any amount of energy could be released in a radiation process.
Planck’s quantum theory turned physics upside down. Indeed, the flurry of research
that ensued altered our concept of nature forever.

Properties of Waves

To understand Planck’s quantum theory, we must know something about the nature
of waves. A wave can be thought of as a vibrating disturbance by which energy is
transmitted. The fundamental properties of a wave are illustrated by a familiar type—
water waves. (Figure 7.1). The regular variation of the peaks and troughs enable us
to sense the propagation of the waves.

Waves are characterized by their length and height and by the number of waves
that pass through a certain point in one second (Figure 7.2). Wavelength A (lambda) is
the distance between identical points on successive waves. The frequency v (nu) is the
number of waves that pass through a particular point in 1 second. Amplitude is the
vertical distance from the midline of a wave to the peak or trough.

"Max Karl Ernst Ludwig Planck (1858-1947). German physicist. Planck received the Nobel Prize in Physics
in 1918 for his quantum theory. He also made significant contributions in thermodynamics and other areas

of physics.
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Figure 7.2 (3 Wavelength and ampilitude. (b) Two waves having different wavelengths and frequencies. The wavelength of the top wave
is three times that of the lower wave, but its frequency is only one-third that of the lower wave. Both waves have the same speed and

amplitude.



7.1 From Classical Physics to Quantum Theory 269

Another important property of waves is their speed, which depends on the type
of wave and the nature of the medium through which the wave is traveling (for exam-
ple, air, water, or a vacuum). The speed («) of a wave is the product of its wavelength
and its frequency:

u= A 7.1

The inherent “sensibility” of Equation (7.1) becomes apparent if we analyze the phys-
ical dimensions involved in the three terms. The wavelength (\) expresses the length
of a wave, or distance/wave. The frequency (v) indicates the number of these waves
that pass any reference point per unit of time, or waves/time. Thus, the product of
these terms results in dimensions of distance/time, which is speed:

distance _ distance % Waves
time wave time

Wavelength is usually expressed in units of meters, centimeters, or nanometers, and
frequency is measured in hertz (Hz), where

1 Hz = 1 cycle/s

The word “cycle” may be left out and the frequency expressed as, for example, 25/s
or 255! (read as “25 per second”).

Example 7.1

Calculate the speed of a wave whose wavelength and frequency are 17.4 cm and
87.4 Hz, respectively.

Solution Recall that 87.4 Hz is the same as 87.4/s. From Equation (7.1),

u=Av
174 cm X 87.4 Hz
17.4 cm X 87.4/s

=152 X 10° cm/s

Practice Exercise Calculate the frequency (in Hz) of a wave whose speed and
wavelength are 713 m/s and 1.14 m, respectively.

Electromagnetic Radiation

There are many kinds of waves, such as water waves, sound waves, and light waves.
In 1873 James Clerk Maxwell proposed that visible light consists of electromag-
netic waves. According to Maxwell’s theory, an electromagnetic wave has an elec-
tric field component and a magnetic field component. These two components have
the same wavelength and frequency, and hence the same speed, but they travel in
mutually perpendicular planes (Figure 7.3). The significance of Maxwell’s theory is
that it provides a mathematical description of the general behavior of light. In par-
ticular, his model accurately describes how energy in the form of radiation can be
propagated through space as vibrating electric and magnetic fields. Electromagnetic
radiation is the emission and transmission of energy in the form of electromagnetic
waves.

’

Similar problem: 7.8,

Sound waves and water waves are not
electromagnetic waves, but X rays and
radio waves are.
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Figure 7.3 The electric field and
magnetic field components of an
electromagnetic wave. These two
components have the same
wavelength, frequency, and
amplitude, but they vibrate in two
mutually perpendicular planes.

A more accurate value for the speed of
light is given on the inside back cover of
the book.

Similar problem: 7.7.

b Electric field component

Magnetic field component

Electromagnetic waves travel 3.00 X 108 meters per second (rounded off), or 186,000
miles per second in a vacuum. This speed does differ from one medium to another, but
not enough to distort our calculations significantly. By convention, we use the symbol ¢
for the speed of electromagnetic waves, or as it is more commonly called, the speed of
light. The wavelength of electromagnetic waves is usually given in nanometers (nm).

Example 7.2

The wavelength of the green light from a traffic signal is centered at 522 nm. What is
the frequency of this radiation?

Strategy We are given the wavelength of an electromagnetic wave and asked to calculate
its frequency. Rearranging Equation (7.1) and replacing u with c (the speed of light) gives

<
Il
> |0

Solution Because the speed of light is given in meters per second, it is convenient to
first convert wavelength to meters. Recall that 1 nm = 1 X 107° m (see Table 1.3). We
write

1xX10°m

= i X ————— = X 107°
A=52n ™ 522X 10 °m

=522X10""m
Substituting in the wavelength and the speed of light (3.00 X 10% m/s), the frequency is

_3.00 X 10° m/s

YT S22 x1007m
= 5.75 X 10'%s, or 5.75 X 10'* Hz

Check The answer shows that 5.75 X 10" waves pass a fixed point every second. This
very high frequency is in accordance with the very high speed of light.

Practice Exercise What is the wavelength (in meters) of an electromagnetic wave
whose frequency is 3.64 X 107 Hz?

Figure 7.4 shows various types of electromagnetic radiation, which differ from
one another in wavelength and frequency. The long radio waves are emitted by large
antennas, such as those used by broadcasting stations. The shorter, visible light waves



7.1 From Classical Physics to Quantum Theory

271

107 107! 10 103 10° 10’ 10° 10! 10"
Wavelength (nm) | L L J 1 1 1 |
10% 10'8 10'6 101 1012 100 108 108 10*
Frequency (Hz) | I ) N 1 ] 1 1 ]
&
Gamma X rays Ultra- "% Infrared Microwave Radio waves
rays violet >
Type of radiation |___ 1 _ 1 1 1 | 1 |

Sun lamps Heat  Microwave ovens, UHF TV,
lamps police radar, cellular
satellite stations telephones

(a)

400 nm 500

(b)

FM radio,
VHF TV

AM
radio

Figure 7.4 (a) Types of electromagnetic radiation. Gamma rays have the shortest wavelength and highest frequency; radio waves have
the longest wavelength and the lowest frequency. Each type of radiation is spread over a specific range of wavelengths (and frequencies).

(b) Visible light ranges from a wavelength of 400 nm (violet) to 700 nm (red).

are produced by the motions of electrons within atoms and molecules. The shortest
waves, which also have the highest frequency, are associated with vy (gamma) rays,
which result from changes within the nucleus of the atom (see Chapter 2). As we will
see shortly, the higher the frequency, the more energetic the radiation. Thus, ultra-
violet radiation, X rays, and vy rays are high-energy radiation.

Planck’s Quantum Theory

When solids are heated, they emit electromagnetic radiation over a wide range of
wavelengths. The dull red glow of an electric heater and the bright white light of a
tungsten lightbulb are examples of radiation from heated solids.

Measurements taken in the latter part of the nineteenth century showed that the
amount of radiation energy emitted by an object at a certain temperature depends on
its wavelength. Attempts to account for this dependence in terms of established wave
theory and thermodynamic laws were only partially successful. One theory explained
short-wavelength dependence but failed to account for the longer wavelengths.
Another theory accounted for the longer wavelengths but failed for short wavelengths.
It seemed that something fundamental was missing from the laws of classical physics.

Planck solved the problem with an assumption that departed drastically from
accepted concepts. Classical physics assumed that atoms and molecules could emit
(or absorb) any arbitrary amount of radiant energy. Planck said that atoms and molecules
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Figure 7.5 An apparatus for
studying the photoelectric effect.
Light of a certain frequency falls
on a clean metal surface. Ejected
electrons are attracted toward
the positive electrode. The flow
of electrons is registered by a
detecting meter. Light meters
used in cameras are based on
photoelectric effect.

This equation has the same form as Equa-
tion (7.2) because, as we will see shortly,
electromagnetic radiation is emitted as
well as absorbed in the form of photons.

Quantum Theory and the Electronic Structure of Atoms

could emit (or absorb) energy only in discrete quantities, like small packages or bun-
dles. Planck gave the name quantum to the smallest quantity of energy that can be
emitted (or absorbed) in the form of electromagnetic radiation. The energy E of a sin-
gle quantum of energy is given by

E=hv (7.2)
where h is called Planck’s constant and v is the frequency of radiation. The value of

Planck’s constant is 6.63 X 107>*J-s. Because v = c/\, Equation (7.2) can also be
expressed as

E=h (71.3)

¢
A

According to quantum theory, energy is always emitted in multiples of Av; for
example, hv, 2 hv, 3 hv, . .., but never, for example, 1.67 v or 4.98 hv. At the time
Planck presented his theory, he could not explain why energies should be fixed or
quantized in this manner. Starting with this hypothesis, however, he had no trouble
correlating the experimental data for emission by solids over the entire range of wave-
lengths; they all supported the quantum theory.

The idea that energy should be quantized or “bundled” may seem strange, but the
concept of quantization has many analogies. For example, an electric charge is also
quantized; there can be only whole-number multiples of e, the charge of one electron.
Matter itself is quantized, for the numbers of electrons, protons, and neutrons and the
numbers of atoms in a sample of matter must also be integers. Our money system is
based on a “quantum” of value called a penny. Even processes in living systems involve
quantized phenomena. The eggs laid by hens are quantized, and a pregnant cat gives
birth to an integral number of kittens, not to one-half or three-quarters of a kitten.

7.2 The Photoelectric Effect

In 1905, only five years after Planck presented his quantum theory, Albert Einstein®
used the theory to solve another mystery in physics, the photoelectric effect, a phe-
nomenon in which electrons are ejected from the surface of certain metals exposed
to light of at least a certain minimum frequency, called the threshold frequency (Figure
7.5). The number of electrons ejected was proportional to the intensity (or brightness)
of the light, but the energies of the ejected electrons were not. Below the threshold
frequency no electrons were ejected no matter how intense the light.

The photoelectric effect could not be explained by the wave theory of light. Ein-
stein, however, made an extraordinary assumption. He suggested that a beam of light
is really a stream of particles. These particles of light are now called photons. Using
Planck’s quantum theory of radiation as a starting point, Einstein deduced that each
photon must possess energy E, given by the equation

E=hv

TAlbert Einstein (1879-1955). German-born American physicist. Regarded by many as one of the two great-
est physicists the world has known (the other is Isaac Newton). The three papers (on special relativity,
Brownian motion, and the photoelectric effect) that he published in 1905 while employed as a technical
assistant in the Swiss patent office in Berne have profoundly influenced the development of physics. He
received the Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect.
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where v is the frequency of light. Electrons are held in a metal by attractive forces,
and so removing them from the metal requires light of a sufficiently high frequency
(which corresponds to sufficiently high energy) to break them free. Shining a beam
of light onto a metal surface can be thought of as shooting a beam of particles—
photons—at the metal atoms. If the frequency of photons is such' that Av is exactly
equal to the energy that binds the electrons in the metal, then the light will have just
enough energy to knock the electrons loose. If we use light of a higher frequency,
then not only will the electrons be knocked loose, but they will also acquire some
kinetic energy. This situation is summarized by the equation

hv = KE + BE (7.4)

where KE is the kinetic energy of the ejected electron and BE is the binding energy
of the electron in the metal. Rewriting Equation (7.4) as

KE = Aiv — BE

shows that the more energetic the photon (that is, the higher its frequency), the greater
the kinetic energy of the ejected electron.

Now consider two beams of light having the same frequency (which is greater
than the threshold frequency) but different intensities. The more intense beam of light
consists of a larger number of photons; consequently, it ejects more electrons from
the metal’s surface than the weaker beam of light. Thus, the more intense the light,
the greater the number of electrons emitted by the target metal; the higher the fre-
quency of the light, the greater the kinetic energy of the ejected electrons.

Example 7.3

Calculate the energy (in joules) of (a) a photon with a wavelength of 5.00 X 10* nm
(infrared region) and (b) a photon with a wavelength of 5.00 X 107% nm (X ray region).

Strategy In both (a) and (b) we are given the wavelength of a photon and asked to
calculate its energy. We need to use Equation (7.3) to calculate the energy. Planck’s
constant is given in the text and also on the back inside cover.

Solution (a) From Equation (7.3),

C
E=h<
N

_ (6.63 X 107**J-5)(3.00 X 10° m/s)
1xX107°m
1 nm

(5.00 X 10° nm)
=398 x 107%'J
This is the energy of a single photon with a 5.00 X 10* nm wavelength.

(b) Following the same procedure as in (a), we can show that the energy of the photon
that has a wavelength of 5.00 X 10" 2nm is 3.98 X 10" 137 .

Check Because the energy of a photon increases with decreasing wavelength, we see
that an “X-ray” photon is 1 X 10° or a million times, more energetic than an “infrared”

photomn. Similar problem: 7.15.

Practice Exercise The energy of a photon is 5.87 X 1072° J, What is its wavelength
(in nanometers)?
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When a high voltage is applied between
the forks, some of the sodium ions in the
pickle are converted to sodium atoms in
an excited state. These atoms emit the
characteristic yellow light as they relax to
the ground state.

Einstein’s theory of light posed a dilemma for scientists. On the one hand, it
explains the photoelectric effect satisfactorily. On the other hand, the particle theory
of light is not consistent with the known wave behavior of light. The only way to
resolve the dilemma is to accept the idea that light possesses both particlelike and
wavelike properties. Depending on the experiment, light behaves either as a wave or
as a stream of particles. This concept, called particle-wave duality, was totally alien
to the way physicists had thought about matter and radiation, and it took a long time
for them to accept it. We will see in Section 7.4 that a dual nature (particles and
waves) is not unique to light but is characteristic of all matter, including electrons.

7.3 Bohr’s Theory of the Hydrogen Atom

Einstein’s work paved the way for the solution of yet another nineteenth-century
“mystery” in physics: the emission spectra of atoms.

Emission Spectra

Ever since the seventeenth century, when Newton showed that sunlight is composed of
various color components that can be recombined to produce white light, chemists and
physicists have studied the characteristics of emission spectra, that is, either continuous
or line spectra of radiation emitted by substances. The emission spectrum of a substance
can be seen by energizing a sample of material either with thermal energy or with some
other form of energy (such as a high-voltage electrical discharge). A “red-hot” or “white-
hot” iron bar freshly removed from a high-temperature source produces a characteristic
glow. This visible glow is the portion of its emission spectrum that is sensed by eye. The
warmth of the same iron bar represents another portion of its emission spectrum—the
infrared region. A feature common to the emission spectra of the sun and of a heated
solid is that both are continuous; that is, all wavelengths of visible light are represented
in the spectra (see the visible region in Figure 7.4).

The emission spectra of atoms in the gas phase, on the other hand, do not show
a continuous spread of wavelengths from red to violet; rather, the atoms produce bright
lines in different parts of the visible spectrum. These line spectra are the light emis-
sion only at specific wavelengths. Figure 7.6 is a schematic diagram of a discharge
tube that is used to study emission spectra, and Figure 7.7 shows the color emitted
by hydrogen atoms in a discharge tube.

Every element has a unique emission spectrum. The characteristic lines in atomic
spectra can be used in chemical analysis to identify unknown atoms, much as fingerprints
are used to identify people. When the lines of the emission spectrum of a known element
exactly match the lines of the emission spectrum of an unknown sample, the identity of
the sample is established. Although the utility of this procedure was recognized some
time ago in chemical analysis, the origin of these lines was unknown until early in the
twentieth century. Figure 7.8 on p. 276 shows the emission spectra of several elements.

Emission Spectrum of the Hydrogen Atom

In 1913, not too long after Planck’s and Einstein’s discoveries, a theoretical explana-
tion of the emission spectrum of the hydrogen atom was presented by the Danish
physicist Niels Bohr." Bohr’s treatment is very complex and is no longer considered

*Niels Henrik David Bohr (1885-1962). Danish physicist. One of the founders of modem physics, he
received the Nobel Prize in Physics in 1922 for his theory explaining the spectrum of the hydrogen atom.



7.3 Bohr’s Theory of the Hydrogen Atom

Photographic plate

AR g

High
voltage

e

Line
spectrum

Discharge tube
Light separated into
various components
(a)
| | | | | I
400 nm 500- 600 700

to be correct in all its details. Thus, we will concentrate only on his important assump-
tions and final results, which do account for the spectral lines.

When Bohr first tackled this problem, physicists already knew that the atom con-
tains electrons and protons. They thought of an atom as an entity in which electrons
whirled around the nucleus in circular orbits at high velocities. This was an appeal-
ing model because it resembled the motions of the planets around the sun. In the
hydrogen atom, it was believed that the electrostatic attraction between the positive
“solar” proton and the negative “planetary” electron pulls the electron inward and that
this force is balanced exactly by the outward acceleration due to the circular motion
of the electron.

Bohr’s model of the atom included the idea of electrons moving in circular orbits,
but he imposed a rather severe restriction: The single electron in the hydrogen atom
could be located only in certain orbits. Because each orbit has a particular energy
associated with it, the energies associated with electron motion in the permitted orbits
must be fixed in value, or quantized. Bohr attributed the emission of radiation by an
energized hydrogen atom to the electron dropping from a higher-energy orbit to a
lower one and giving up a quantum of energy (a photon) in the form of light (Figure
7.9). Using arguments based on electrostatic interaction and Newton’s laws of motion,
Bohr showed that the energies that the electron in the hydrogen atom can possess are

given by
1
E,= —Ryl —
o)

where Ry, the RydbergT constant, has the value 2.18 X 107 '3 J. The number 7 is an
integer called the principal quantum number; it has the values n =1, 2, 3, ....

(7.5)

Johannes Robert Rydberg (1854-1919). Swedish physicist. Rydberg’s major contribution to physics was
his study of the line spectra of many elements.
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Figure 7.6 (a) An experimental
arrangement for studying the
emission spectra of atoms and
molecules. The gas under study is
in a discharge tube containing two
electrodes. As electrons flow from
the negative electrode to the
positive electrode, they collide with
the gas. This collision process
eventually leads to the emission of
light by the atoms (or molecules).
The emitted light is separated into
its components by a prism. Each
component color is focused at a
definite position, according to its
wavelength, and forms a colored
image of the siit on the photographic
plate. The colored images are
called spectral lines. (b) The line
emission spectrum of hydrogen
atoms.

Figure 7.7 Color emitted by
hydrogen atoms in a discharge
tube. The color observed results
from the combination of the colors
emitted in the visible spectrum.
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Figure 7.8 The emission spectra
of various elements.

Photon
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n=3

Figure 7.9 The emission
process in an excited hydrogen
atom, according to Bohr’s theory.
An electron originally in a higher-
energy orbit (n = 3) falls back to a
lower-energy orbit (n = 2). As.a
result, a photon with energy hv is
given off. The value of hv is equal
to the difference in energies of the
two orbits occupied by the electron
in the emission process. For
simplicity, only three orbits are
shown.
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The negative sign in Equation (7.5) is an arbitrary convention, signifying that the
energy of the electron in the atom is lower than the energy of a free electron, which
is an electron that is infinitely far from the nucleus. The energy of a free electron is
arbitrarily assigned a value of zero. Mathematically, this corresponds to setting n equal
to infinity in Equation (7.5), so that E,, = 0. As the electron gets closer to the nucleus
(as n decreases), E, becomes larger in absolute value, but also more negative. The
most negative value, then, is reached when n = 1, which corresponds to the most sta-
ble energy state. We call this the ground state, or the ground level, which refers to
the lowest energy state of a system (which is an atom in our discussion). The stabil-
ity of the electron diminishes for n = 2, 3,.... Each of these levels is called an
excited state, or excited level, which is higher in energy than the ground state. A
hydrogen electron for which n is greater than 1 is said to be in an excited state. The
radius of each circular orbit in Bohr’s model depends on n”. Thus, as n increases from
1 to 2 to 3, the orbit radius increases very rapidly. The higher the excited state, the
farther away the electron is from the nucleus (and the less tightly it is held by the
nucleus).

Bohr’s theory enables us to explain the line spectrum of the hydrogen atom. Radi-
ant energy absorbed by the atom causes the electron to move from a lower-energy
state (characterized by a smaller n value) to a higher-energy state (characterized by a
larger n value). Conversely, radiant energy (in the form of a photon) is emitted when
the electron moves from a higher-energy state to a lower-energy state. The quantized
movement of the electron from one energy state to another is analogous to the move-
ment of a tennis ball either up or down a set of stairs (Figure 7.10). The ball can be
on any of several steps but never between steps. The journey from a lower step to a
higher one is an energy-requiring process, whereas movement from a higher step to
a lower step is an energy-releasing process. The quantity of energy involved in either
type of change is determined by the distance between the beginning and ending steps.

Aikali Metals

Alkaline Earth
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Similarly, the amount of energy needed to move an electron in the Bohr atom depends
on the difference in energy levels between the initial and final states.

To apply Equation (7.5) to the emission process in a hydrogen atom, let us sup-
pose that the electron is initially in an excited state characterized by the principal
quantum number n;. During emission, the electron drops to a lower energy state char-
acterized by the principal quantum number ;¢ (the subscripts i and f denote the ini-
tial and final states, respectively). This lower energy state may be either a less excited
state or the ground state. The difference between the energies of the initial and final
states is

AE=Ef—Ei

From Equation (7.5),

and E; = —Ry

—R -R
Therefore, AE = ( 2“) - < 2“)
n¢ nj

_R (L_L)
"\ni i

Because this transition results in the emission of a photon of frequency » and energy
hv, we can write

AE = hv = Rﬂ(i2 - %) (7.6)

n; ng

When a photon is emitted, n; > n;. Consequently the term in parentheses is negative
and AE is negative (energy is lost to the surroundings). When energy is absorbed,
n; < ng and the term in parentheses is positive, so AE is positive. Each spectral line
in the emission spectrum corresponds to a particular transition in a hydrogen atom.
When we study a large number of hydrogen atoms, we observe all possible transi-
tions and hence the corresponding spectral lines. The brightness of a spectral line
depends on how many photons of the same wavelength are emitted.

The emission spectrum of hydrogen includes a wide range of wavelengths from
the infrared to the ultraviolet. Table 7.1 lists the series of transitions in the hydrogen

57.\-]EFZW The Various Series in Atomic Hydrogen Emission Spectrum

Series ne n; Spectrum Region
Lyman 1 2,3,4,... Ultraviolet

Balmer 2 3,4,5,... Visible and ultraviolet
Paschen 3 4,5,6,... Infrared

Brackett 4 56,7,... Infrared

Figure 7.10 A mechanical
analogy for the emission processes.
The ball can rest on any step but
not between steps.
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Figure 7.11 The energy levels
in the hydrogen atom and the
various emission series, Each
energy level corresponds to the
energy associated with an allowed
energy state for an orbit, as
postulated by Bohr and shown in
Figure 7.9. The emission lines are
labeled according to the scheme
inTable 7.1.

The negative sign is in accord with our
convention that energy is given off to the
surroundings.
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spectrum; they are named after their discoverers. The Balmer series was particularly
easy to study because a number of its lines fall in the visible range.

Figure 7.9 shows a single transition. However, it is more informative to express
transitions as shown in Figure 7.11. Each horizontal line represents an allowed energy
level for the electron in a hydrogen atom. The energy levels are labeled with their
principal quantum numbers.

Example 7.4 illustrates the use of Equation (7.6).

Example 7.4
What is the wavelength of a photon (in nanometers) emitted during a transition from the

n; = 5 state to the ny; = 2 state in the hydrogen atom?

Strategy We are given the initial and final states in the emission process. We can
calculate the energy of the emitted photon using Equation (7.6). Then from Equations
(7.2) and (7.1) we can solve for the wavelength of the photon. The value of Rydberg’s
constant is given in the text.

Solution From Equation (7.6) we write

ni e
fles =)
- ~18
=218 X 10 1(5—2 - §>
= —458 X 10719}

The negative sign indicates that this is energy associated with an emission process. To
calculate the wavelength, we will omit the minus sign for AE because the wavelength of

(Continued)
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the photon must be positive. Because AE = hv or v = AE/h, we can calculate the
wavelength of the photon by writing

=2

v

G,

AE
_ (3.00 X 10° m/s)(6.63 X 107> ] -5)

4.58 X 107"
=434x 10 m
1
=434 %107 m X (———"’fg ) = 434 nm
1 X 10" m

Check The wavelength is in the visible region of the electromagnetic region (see
Figure 7.4). This is consistent with the fact that because n; = 2, this transition gives rise
to a spectral line in the Balmer series (see Figure 7.6).

Practice Exercise What is the wavelength (in nanometers) of a photon emitted during
a transition from n; = 6 to n; = 4 state in the H atom?

The Chemistry in Action essay on p. 280 discusses a special type of atomic
emission—lasers.

7.4 The Dual Nature of the Electron

Physicists were both mystified and intrigued by Bohr’s theory. They questioned why
the energies of the hydrogen electron are quantized. Or, phrasing the question in a more
concrete way, Why is the electron in a Bohr atom restricted to orbiting the nucleus at
certain fixed distances? For a decade no one, not even Bohr himself, had a logical
explanation. In 1924 Louis de Broglie" provided a solution to this puzzle. De Broglie
reasoned that if light waves can behave like a stream of particles (photons), then per-
haps particles such as electrons can possess wave properties. According to de Broglie,
an electron bound to the nucleus behaves like a standing wave. Standing waves can be
generated by plucking, say, a guitar string (Figure 7.12). The waves are described as
standing, or stationary, because they do not travel along the string. Some points on the
string, called nodes, do not move at all; that is, the amplitude of the wave at these
points is zero. There is a node at each end, and there may be nodes between the ends.
The greater the frequency of vibration, the shorter the wavelength of the standing wave
and the greater the number of nodes. As Figure 7.12 shows, there can be only certain
wavelengths in any of the allowed motions of the string.

Louis Victor Pierre Raymond Duc de Broglie (1892-1977). French physicist. Member of an old and noble
family in France, he held the title of a prince. In his doctoral dissertation, he proposed that matter and radi-
ation have the properties of both wave and particle. For this work, de Broglie was awarded the Nobel Prize
in Physics in 1929.

Similar problems: 7.31, 7.32.

Figure 7.12 The standing waves
generated by plucking a guitar
string. Each dot represents a node.
The length of the string (l) must be
equal to a whole number times
one-half the wavelength (\/2).



Laser—The Splendid Light

Laser is an acronym for light amplification by stimulated
emission of radiation. It is a special type of emission that in-
volves either atoms or molecules. Since the discovery of laser in
1960, it has been used in numerous systems designed to operate
in the gas, liquid, and solid states. These systems emit radiation

in Action

CHEMISTRY

with wavelengths ranging from infrared through visible and ul-
traviolet. The advent of laser has truly revolutionized science,
medicine, and technology.

Ruby laser was the first known laser. Ruby is a deep-red
mineral containing corundum, Al,O3, in which some of the A’ *

The emission of laser light from a

Totally reflecting mirror
ruby laser.

Flash lamp

Partially reflecting mirror

The stimulated emission of one
photon by another photon in a
cascade event that leads to the
emission of laser light. The syn-
chronization of the light waves
produces an intensely penetrat-
ing laser beam.

De Broglie argued that if an electron does behave like a standing wave in the
hydrogen atom, the length of the wave must fit the circumference of the orbit exactly
(Figure 7.13). Otherwise the wave would partially cancel itself on each successive
orbit. Eventually the amplitude of the wave would be reduced to zero, and the wave
would not exist.

The relation between the circumference of an allowed orbit (27r) and the wave-
length (A) of the electron is given by

27r = n\ 7.7

where r is the radius of the orbit, \ is the wavelength of the electron wave, and
n=1,2,3,.... Because n is an integer, it follows that r can have only certain val-
ues as n increases from 1 to 2 to 3 and so on. And because the energy of the elec-
tron depends on the size of the orbit (or the value of r), its value must be quantized.
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jons have been replaced by Cr®* ions. A flashlamp is used to ex-
cite the chromium atoms to a higher energy level. The excited
atoms are unstable, so at a given instant some of them will return
to the ground state by emitting a photon in the red region of the
spectrum. The photon bounces back and forth many times be-
tween mirrors at opposite ends of the laser tube. This photon can
stimulate the emission of photons of exactly the same wave-
length from other excited chromium atoms; these photons in turn
can stimulate the emission of more photons, and so on. Because
the light waves are in phase—that is, their maxima and minima
coincide-—the photons enhance one another, increasing their
power with each passage between the mirrors. One of the mirrors
is only partially reflecting, so that when the light reaches a cer-
tain intensity it emerges from the mirror as a laser beam. De-
pending on the mode of operation, the laser light may be emitted
in pulses (as in the ruby laser case) or in continuous waves.

Laser light is characterized by three properties: It is in-
tense, it has precisely known wavelength and hence energy,
and it is coherent. By coherent we mean that the light waves
are all in phase. The applications of lasers are quite numerous.
Their high intensity and ease of focus make them suitable for
doing eye surgery, for drilling holes in metals and welding,
and for carrying out nuclear fusion. The fact that they are
highly directional and have precisely known wavelengths
makes them very useful for telecommunications. Lasers are also
used in isotope separation, in holography (three-dimensional
photography), in compact disc players, and in supermarket
scanners. Lasers have played an important role in the spectro-
scopic investigation of molecular properties and of many
chemical and biological processes. Laser lights are increas-
ingly being used to probe the details of chemical reactions (see
Chapter 13).

State-of-the-art lasers used in the research laboratory of Dr. A. H. Zewail at the California Institute of Technology.

De Broglie’s reasoning led to the conclusion that waves can behave like particles
and particles can exhibit wavelike properties. De Broglie deduced that the particle and

wave properties are related by the expression

(7.8)

where N, m, and u are the wavelengths associated with a moving particle, its mass,
and its velocity, respectively. Equation (7.8) implies that a particle in motion can be
treated as a wave, and a wave can exhibit the properties of a particle. Note that the
left side of Equation (7.8) involves the wavelike property of wavelength, whereas the
right side makes references to mass, a distinctly particlelike property.
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(b)

Figure 7.13 (a) The circum-
ference of the orbit is:equal to an
integral number of wavelengths.
This is an allowed orbit. (b) The
circumference of the orbit is

not equal to an integral number

of wavelengths. As a result, the
electron wave does not close-in on
itself. This is a nonallowed orbit.

Similar problems: 7.40, 7.41.

Example 7.5

Calculate the wavelength of the “particle” in the following two cases: (a) The fastest
serve in tennis is about 150 miles per hour, or 68 m/s. Calculate the wavelength
associated with 2 6.0 X 10~ >-kg tennis ball traveling at this speed. (b) Calculate the
wavelength associated with an electron (9.1094 X 107" kg) moving at 63 m/s.

Strategy We are given the mass and the speed of the particle in (a) and (b) and asked
to calculate the wavelength so we need Equation (7.8). Note that because the units of
Planck’s constants are J-s, m and u must be in kg and m/s (1J = 1 kg m?/s?),
respectively.

Solution (a) Using Equation (7.8) we write

h

mu
6.68 X 1073*].s

(6.0 X 10> kg) X 63 m/s
=11.6;%10525m

>
I

Comment This is an exceedingly small wavelength considering that the size of an
atom itself is on the order of 1 X 107'®m. For this reason, the wave properties of a
tennis ball cannot be detected by any existing measuring device.

(b) In this case,

B 6.63 X 107**J-5s
(9.1094 X 107" kg) X 68 m/s
=11X107°m

Comment This wavelength (1.1 X 10 °mor 1.1 X 10* nm) is in the infrared region.
This calculation shows that only electrons (and other submicroscopic particles) have
measurable wavelengths.

Practice Exercise Calculate the wavelength (in nanometers) of a H atom (mass =
1.674 x 10”2 kg) moving at 7.00 X 107 cm/s.

Example 7.5 shows that although de Broglie’s equation can be applied to diverse
systems, the wave properties become observable only for submicroscopic objects. This
distinction is due to the smallness of Planck’s constant, 4, which appears in the numer-
ator in Equation (7.8).

Shortly after de Broglie introduced his equation, Clinton Davisson' and Lester
Germer® in the United States and G. P. Thomson® in England demonstrated that elec-
trons do indeed possess wavelike properties. By directing a beam of electrons through
a thin piece of gold foil, Thomson obtained a set of concentric rings on a screen,

*Clinton Joseph Davisson (1881-1958). American physicist. He and G. P. Thomson shared the Nobel Prize
in Physics in 1937 for demonstrating wave properties of electrons.

*Lester Halbert Germer (1896-1972). American physicist. Discoverer (with Davisson) of the wave proper-
ties of electrons.

$George Paget Thomson (1892-1975). English physicist. Son of 1. J. Thomson, he received the Nobel Prize
in Physics in 1937, along with Clinton Davisson, for demonstrating wave properties of electrons.
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similar to the pattern observed when X rays (which are waves) were used. Figure 7.14
shows such a pattern for aluminum.
The Chemistry in Action essay on p. 284 describes electron microscopy.

7.5 Quantum Mechanics

The spectacular success of Bohr’s theory was followed by a series of disappointments.
Bohr’s approach did not account for the emission spectra of atoms containing more
than one electron, such as atoms of helium and lithium. Nor did it explain why extra
lines appear in the hydrogen emission spectrum when a magnetic field is applied.
Another problem arose with the discovery that electrons are wavelike: How can the
“position” of a wave be specified? We cannot define the precise location of a wave
because a wave extends in space.

To describe the problem of trying to locate a subatomic particle that behaves like
a wave, Werner Heisenberg' formulated what is now known as the Heisenberg uncer-
tainty principle: it is impossible to know simultaneously both the momentum p
(defined as mass times velocity) and the position of a particle with certainty. Stated
mathematically, i

h
Ap = —
LY 4

(7.9)
where Ax and Ap are the uncertainties in measuring the position and momentum,
respectively. Equation (7.9) says that if we make the measurement of the momentum
of a particle more precise (that is, if we make Ap a small quantity), our knowledge of
the position will become correspondingly less precise (that is, Ax will become larger).
Similarly, if the position of the particle is known more precisely, then its momentum
measurement must be less precise. Applying the Heisenberg uncertainty principle to
the hydrogen atom, we see that in reality the electron does not orbit the nucleus in a

*Werner Karl Heisenberg (1901-1976). German physicist. One of the founders of modern quantum theory,
Heisenberg received the Nobel Prize in Physics in 1932.
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Figure 7.14 (a) X-ray diffraction
patten of aluminum foil. (b) Electron
diffraction of aluminum foil. The
similarity of these two patterns
shows that electrons can behave
like X rays and display wave
properties.

In reality, Bohr's theory accounted for the
observed emission spectra of He* and Li?*
ions, as well as that of hydrogen. However,
all three systems have one feature in
common—each contains a single electron.
Thus, the Bohr model worked successfully
only for the hydrogen atom and for
“hydrogenlike ions.”

The = sign means that the product AxAp
can be greater than or equal to h/4m, but it
can never be smaller than h/4.



Electron Microscopy

The electron microscope is an extremely valuable application
of the wavelike properties of electrons because it produces
images of objects that cannot be seen with the naked eye or with
light microscopes. According to the laws of optics, it is impos-
sible to form an image of an object that is smaller than half the
wavelength of the light used for the observation. Because the
range of visible light wavelengths starts at around 400 nm, or
4 X 107> cm, we cannot see anything smaller than 2 X 105 cm,
In principle, we can see objects on the atomic and molecular
scale by using X rays, whose wavelengths range from about
0.01 nm to 10 nm. However, X rays cannot be focused, so they
do not produce well-formed images. Electrons, on the other
hand, are charged particles, which can be focused in the same
way the image on a TV screen is focused, that is, by applying an
electric field or a magnetic field. According to Equation (7.8),
the wavelength of an electron is inversely proportional to its ve-
locity. By accelerating electrons to very high velocities, we can
obtain wavelengths as short as 0.004 nm.

A different type of electron microscope, called the scan-
ning tunneling microscope (STM), makes use of another quan-
tum mechanical property of the electron to produce an image of
the atoms on the surface of a sample. Because of its extremely

An electron micrograph showing a normal red blood cell and a sickled red
blood cell from the same person.

284

C.)HEM.ISTRY
in Action

small mass, an electron is able to move or “tunnel” through an
energy barrier (instead of going over it). The STM consists of a
tungsten metal needle with a very fine point, the source of the
tunneling electrons. A voltage is maintained between the needle
and the surface of the sample to induce electrons to tunnel
through space to the sample. As the needle moves over the sam-
ple, at a distance of a few atomic diameters from the surface, the
tunneling current is measured. This current decreases with in-
creasing distance from the sample. By using a feedback loop,
the vertical position of the tip can be adjusted to a constant
distance from the surface. The extent of these adjustments,
which profile the sample, is recorded and displayed as a three-
dimensional false-colored image.

Both the electron microscope and the STM are among the
most powerful tools in chemical and biological research.

STM image of iron atoms arranged to display the Chinese characters for
atom on a copper surface.
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well-defined path, as Bohr thought. If it did, we could determine precisely both the
position of the electron (from its location on a particular orbit) and its momentum (from
its kinetic energy) at the same time, a violation of the uncertainty principle.

To be sure, Bohr made a significant contribution to our understanding of atoms,
and his suggestion that the energy of an electron in an atom is quantized remains
unchallenged. But his theory did not provide a complete description of electronic
behavior in atoms. In 1926 the Austrian physicist Erwin Schrodinger,” using a com-
plicated mathematical technique, formulated an equation that describes the behavior
and energies of submicroscopic particles in general, an equation analogous to Newton’s
laws of motion for macroscopic objects. The Schridinger equation requires advanced
calculus to solve, and we will not discuss it here. It is important to know, however,
that the equation incorporates both particle behavior, in terms of mass m, and wave
behavior, in terms of a wave function 4 (psi), which depends on the location in space
of the system (such as an electron in an atom).

The wave function itself has no direct physical meaning. However, the probabil-
ity of finding the electron in a certain region in space is proportional to the square of
the wave function, . The idea of relating ) to probability stemmed from a wave
theory analogy. According to wave theory, the intensity of light is proportional to the
square of the amplitude of the wave, or ¢s>. The most likely place to find a photon is
where the intensity is greatest, that is, where the value of i is greatest. A similar
argument associates &? with the likelihood of finding an electron in regions sur-
rounding the nucleus.

Schrédinger’s equation began a new era in physics and chemistry, for it launched
a new field, quantum mechanics (also called wave mechanics). We now refer to the
developments in quantum theory from 1913—the time Bohr presented his analysis
for the hydrogen atom—to 1926 as “old quantum theory.”

The Quantum Mechanical Description of the Hydrogen Atom

The Schrédinger equation specifies the possible energy states the electron can occupy in
a hydrogen atom and identifies the corresponding wave functions (). These energy
states and wave functions are characterized by a set of quantum numbers (to be discussed
shortly), with which we can construct a comprehensive model of the hydrogen atom.

Although quantum mechanics tells us that we cannot pinpoint an electron in an
atom, it does define the region where the electron might be at a given time. The con-
cept of electron density gives the probability that an electron will be found in a par-
ticular region of an atom. The square of the wave function, %, defines the distribu-
tion of electron density in three-dimensional space around the nucleus. Regions of
high electron density represent a high probability of locating the electron, whereas the
opposite holds for regions of low electron density (Figure 7.15).

To distinguish the quantum mechanical description of an atom from Bohr’s
model, we speak of an atomic orbital, rather than an orbit. An atemic orbital can be
thought of as the wave function of an electron in an atom. When we say that an elec-
tron is in a certain orbital, we mean that the distribution of the electron density or the
probability of locating the electron in space is described by the square of the wave
function associated with that orbital. An atomic orbital, therefore, has a characteris-
tic energy, as well as a characteristic distribution of electron density.

The Schrédinger equation works nicely for the simple hydrogen atom with its
one proton and one electron, but it turns out that it cannot be solved exactly for any

"Erwin Schrédinger (1887-1961). Austrian physicist. Schrédinger formulated wave mechanics, which laid
the foundation for modern quantum theory. He received the Nobel Prize in Physics in 1933.

Figure 7.15 A representation of
the electron density distribution
surrounding the nucleus in the
hydrogen atom. It shows a high
probability of finding the electron
closer to the nucleus.
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Although the helium atom has only two
electrons, in quantum mechanics it is
regarded as a many-electron atom.

Equation (7.5) hoids only for the hydrogen
atom.

atom containing more than one electron! Fortunately, chemists and physicists have
learned to get around this kind of difficulty by approximation. For example, although
the behavior of electrons in many-electron atoms (that is, atoms containing two or
more electrons) is not the same as in the hydrogen atom, we assume that the differ-
ence is probably not too great. Thus we can use the energies and wave functions
obtained from the hydrogen atom as good approximations of the behavior of electrons
in more complex atoms. In fact, this approach provides fairly reliable descriptions of
electronic behavior in many-electron atoms.

7.6 Quantum Numbers

In quantum mechanics, three quantum numbers are required to describe the distri-
bution of electrons in hydrogen and other atoms. These numbers are derived from the
mathematical solution of the Schrodinger equation for the hydrogen atom. They are
called the principal quantum number, the angular momentum quantum number, and
the magnetic quantum number. These quantum numbers will be used to describe
atomic orbitals and to label electrons that reside in them. A fourth quantum number—
the spin quantum number—describes the behavior of a specific electron and com-
pletes the description of electrons in atoms.

The Principal Quantum Number (n)

The principal quantum number (1) can have integral values 1, 2, 3, and so forth; it
corresponds to the quantum number in Equation (7.5). In a hydrogen atom, the value of
n determines the energy of an orbital. As we will see shortly, this is not the case for
a many-electron atom. The principal quantum number also relates to the average dis-
tance of the electron from the nucleus in a particular orbital. The larger n is, the greater
the average distance of an electron in the orbital from the nucleus and therefore the
larger the orbital.

The Angular Momentum Quantum Number (€)

The angular momentum quantum number (€) tells us the “shape” of the orbitals (see
Section 7.7). The values of € depend on the value of the principal quantum number,
n. For a given value of n, € has possible integral values from O to (n ~ 1). If n = 1,
there is only one possible value of ¢; thatis, € =n—1=1~- 1= 0. If n = 2, there
are two values of ¢, given by 0 and 1. If n = 3, there are three values of €, given by
0, 1, and 2. The value of € is generally designated by the letters s, p, d, . . . as follows:

¢ | O 1 2 3 4
Name of orbital | s p d f g

Thus if € = 0, we have an s orbital; if € = 1, we have a p orbital; and so on.

The unusual sequence of letters (s, p, and &) has a historical origin. Physicists
who studied atomic emission spectra tried to correlate the observed spectral lines with
the particular energy states involved in the transitions. They noted that some of the
lines were sharp; some were rather spread out, or diffuse; and some were very strong
and hence referred to as principal lines. Subsequently, the initial letters of each adjec-
tive were assigned to those energy states. However, after the letter d and starting with
the letter f (for fundamental), the orbital designations follow alphabetical order.

A collection of orbitals with the same value of # is frequently called a shell. One
or more orbitals with the same n and ¢ values are referred to as a subshell. For
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example, the shell with n = 2 is composed of two subshells, € = 0 and 1 (the allowed
values for n = 2). These subshells are called the 2s and 2p subshells where 2 denotes
the value of n, and s and p denote the values of £.

The Magnetic Quantum Number (m,)

The magnetic quantum number (m,) describes the orientation of the orbital in space
(to be discussed in Section 7.7). Within a subshell, the value of m, depends on the
value of the angular momentum quantum number, €. For a certain value of ¢, there
are (2€ + 1) integral values of m, as follows:

—0,(—€+1),...0,...(+€—1), +¢

If € = 0, then m, = 0. If £ = 1, then there are {(2 X 1) + 1], or three values of m,,
namely, —1, 0, and 1. If € = 2, there are [(2 X 2) + 1], or five values of m,, namely,
—2, —1, 0, 1, and 2. The number of m, values indicates the number of orbitals in a
subshell with a particular € value.

To conclude our discussion of these three quantum numbers, let us consider a sit-
uation in which n = 2 and € = 1. The values of n and € indicate that we have a 2p
subshell, and in this subshell we have three 2p orbitals (because there are three val-
ues of mg, given by —1, 0, and 1).

The Electron Spin Quantum Number ()

Experiments on the emission spectra of hydrogen and sodium atoms indicated that
lines in the emission spectra could be split by the application of an external magnetic
field. The only way physicists could explain these results was to assume that elec-
trons act like tiny magnets. If electrons are thought of as spinning on their own axes,
as Earth does, their magnetic properties can be accounted for. According to electro-
magnetic theory, a spinning charge generates a magnetic field, and it is this motion
that causes an electron to behave like a magnet. Figure 7.16 shows the two possible
spinning motions of an electron, one clockwise and the other counterclockwise. To
take the electron spin into account, it is necessary to introduce a fourth quantum num-
ber, called the electron spin quantum number (rm;), which has a value of +1or -1

Conclusive proof of electron spin was provided by Otto Stern” and Walther
Gerlach® in 1924. Figure 7.17 shows the basic experimental arrangement. A beam of

*Otto Stern (1888-1969). German physicist. He made important contributions to the study of magnetic
properties of atoms and the kinetic theory of gases. Stern was awarded the Nobel Prize in Physics in 1943,

*Walther Gerlach (1889-1979). German physicist. Gerlach’s main area of research was in quantum theory.

\ mg = +%

Detecting screen

Slit screen
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Remember that the “2” in 2s refers to the
value of n and the “s” symbolizes the value
of €.

T '

(@) (b)

Figure 7.16 The (a) clockwise
and (b) counterclockwise spins of
an electron. The magnetic fields
generated by these two spinning
motions are analogous to those
from the two magnets. The upward
and downward arrows are used to
denote the direction of spin.

In their experiment, Stem and Gerlach
used silver atoms, which contain just one
unpaired electron. To illustrate the princi-
ple, we can assume that hydrogen atoms
are used in the study.

Figure 7.17 Experimental
arrangement for demonstrating the
spinning motion of electrons. A
beam of atoms is directed through
a magnetic field. For example,
when a hydrogen atomn with a
single electron passes through the
field, it is deflected in one direction
or the other, depending on the
direction of the spin. In a stream
consisting of many atoms, there
will be equal distributions of the
two kinds of spins, so that two
spots of equal intensity are
detected on the screen.
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.‘

Interactivity:
Orbital Shapes and Energy
ARIS, Interactives

That the wave function for an orbital theo-
retically has no outer limit as one moves
outward from the nucleus raises interesting
philosophical questions regarding the
sizes of atoms. Chemists have agreed on
an operational definition of atomic size, as
we will see in later chapters.

An s subshell has one orbital, a p subshell
has three orbitals, and a d subshell has five
orbitals.

gaseous atoms generated in a hot furnace passes through a nonhomogeneous mag-
netic field. The interaction between an electron and the magnetic field causes the
atom to be deflected from its straight-line path. Because the spinning motion is com-
pletely random, the electrons in half of the atoms will be spinning in one direction,
and those atoms will be deflected in one way; the electrons in the other half of the
atoms will be spinning in the opposite direction, and those atoms will be deflected
in the other direction. Thus, two spots of equal intensity are observed on the detect-
ing screen.

7.7 Atomic Orbitals

Table 7.2 shows the relation between quantum numbers and atomic orbitals. We see
that when € = 0, (2¢ + 1) = 1 and there is only one value of m,, thus we have an
s orbital. When € = 1, (2€ + 1) = 3, so there are three values of m or three p
orbitals, labeled p,, p,, and p,. When € = 2, (2€ + 1) = 5 and there are five values
of me, and the corresponding five d orbitals are labeled with more elaborate subscripts.
In the following sections we will consider the s, p, and d orbitals separately.

s Orbitals. One of the important questions we ask when studying the properties of
atomic orbitals is, What are the shapes of the orbitals? Strictly speaking, an orbital
does not have a well-defined shape because the wave function characterizing the
orbital extends from the nucleus to infinity. In that sense, it is difficult to say what an
orbital looks like. On the other hand, it is certainly convenient to think of orbitals as
having specific shapes, particularly in discussing the formation of chemical bonds
between atoms, as we will do in Chapters 9 and 10.

Although in principle an electron can be found anywhere, we know that most of
the time it is quite close to the nucleus. Figure 7.18(a) shows the distribution of elec-
tron density in a hydrogen s orbital moving outward from the nucleus. As you can
see, the electron density falls off rapidly as the distance from the nucleus increases.
Roughly speaking, there is about a 90 percent probability of finding the electron
within a sphere of radius 100 pm (1 pm = 1 X 10~ '? m) surrounding the nucleus.
Thus, we can represent the 1s orbital by drawing a boundary surface diagram that
encloses about 90 percent of the total electron density in an orbital, as shown in
Figure 7.18(b). A 1s orbital represented in this manner is merely a sphere.

1.0 S W Relation Between Quantum Numbers and Atomic Orbitals

Number Atomic

n 4 my, of Orbitals Orbital Designations
1 0 0 1 1s
2 0 0 1 2s

1 -1,0,1 3 2p,, 2py, 2p,
3 0 0 1 3s

1 -1,0,1 3 3ps 3py, 3p,

2 -2,-1,0,1,2 5 3d,,, 3d,,, 3d,,,

3de- 2, 3dy
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)

Radial
probability

Distance from
nucleus

(c)

Figure 7.19 shows boundary surface diagrams for the s, 25, and 3s hydrogen
atomic orbitals. All s orbitals are spherical in shape but differ in size, which increases
as the principal quantum number increases. Although the details of electron density
variation within each boundary surface are lost, there is no serious disadvantage. For
us the most important features of atomic orbitals are their shapes and relative sizes,
which are adequately represented by boundary surface diagrams.

p Orbitals. It should be clear that the p orbitals start with the principal quantum num-
ber n = 2. If n = 1, then the angular momentum quantum number £ can assume only
the value of zero; therefore, there is only a 1s orbital. As we saw earlier, when € = 1,
the magnetic quantum number m, can have values of —1, 0, 1. Starting with n = 2 and
€ = 1, we therefore have three 2p orbitals: 2p,, 2p,, and 2p, (Figure 7.20). The letter
subscripts indicate the axes along which the orbitals are oriented. These three p orbitals
are identical in size, shape, and energy; they differ from one another only in orienta-
tion. Note, however, that there is no simple relation between the values of m, and the
x, y, and z directions. For our purpose, you need only remember that because there are
three possible values of me, there are three p orbitals with different orientations.

The boundary surface diagrams of p orbitals in Figure 7.20 show that each p
orbital can be thought of as two lobes on opposite sides of the nucleus. Like s orbitals,
p orbitals increase in size from 2p to 3p to 4p orbital and so on.

d Orbitals and Other Higher-Energy Orbitals. When € = 2, there are five values
of m,, which correspond to five d orbitals. The lowest value of n for a d orbital is 3.
Because € can never be greater than n — 1, when n = 3 and ¢ = 2, we have five 3d

sz 2p y 217 2z
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Figure 7.18 (a) Piot of electron
density in the hydrogen 1s orbital
as a function of the distance from
the nucleus. The electron density
falls off rapidly as the distance
from the nucleus increases. (b)
Boundary surface diagram of the
hydrogen 1s orbital. (c) A more
realistic way of viewing electron
density distribution is to divide the
1s orbital into successive spherical
thin shells. A plot of the probability
of finding the electron in each
shell, called radial probability, as a
function of distance shows a
maximum at 52.9 pm from the
nucleus. Interestingly, this is equal
to the radius of the innermost orbit
in the Bohr model.

0@

Figure 7.19 Boundary surface
diagrams of the hydrogen 1s, 2s,
and 3s orbitals. Each sphere
contains about 90 percent of the
total electron density. All s orbitals
are spherical. Roughly speaking,
the size of an orbital is proportional
to n?, where n is the principal
quantum number.

Figure 7.20 The boundary
surface diagrams of the three 2p
orbitals. These orbitals are identical
in shape and energy, but their
orientations are different. The p
orbitals of higher principal quantum
numbers have a similar shape.
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3d

XZ

3d,._

yZ

Figure 7.21 Boundary surface diagrams of the five 3d orbitals. Although the 3d,- orbital looks different, it is equivalent to the other four
orbitals in all other respects. The d orbitals of higher principal quantum numbers have similar shapes.

orbitals (3d,,, 3d,,, 3d,,, 3d.>_ % and 3d.2), shown in Figure 7.21. As in the case of
the p orbitals, the different orientations of the d orbitals correspond to the different
values of m,, but again there is no direct correspondence between a given orientation
and a particular m, value. All the 3d orbitals in an atom are identical in energy. The
d orbitals for which n is greater than 3 (4d, 5d, ...) have similar shapes.

Orbitals having higher energy than d orbitals are labeled f, & ...and so on. The f
orbitals are important in accounting for the behavior of elements with atomic numbers
greater than 57, but their shapes are difficult to represent. In general chemistry, we are
not concerned with orbitals having ¢ values greater than 3 (the g orbitals and beyond).

Examples 7.6 and 7.7 illustrate the labeling of orbitals with quantum numbers
and the calculation of total number of orbitals associated with a given principal quan-
tum number.

Example 7.6

List the values of n, ¢, and m, for orbitals in the 4d subshell.

Strategy What are the relationships among n, ¢, and m,? What do “4” and “4”
represent in 44?

Solution As we saw earlier, the number given in the designation of the subshell is

the principal quantum number, so in this case n = 4. The letter designates the type of
orbital. Because we are dealing with d orbitals, £ = 2. The values of myg can vary from —¢
to ¢. Therefore, me can be ~2, —1, 0, 1, or 2.

Check The values of 7 and € are fixed for 4d, but m, can have any one of the five
Similar problem: 7.57. values, which correspond to the five d orbitals.

Practice Exercise Give the values of the quantum numbers associated with the
orbitals in the 3p subshell.

Example 7.7

What is the total number of orbitals associated with the principal quantum number n = 37

Strategy To calculate the total number of orbitals for a given n value, we need to
first write the possible values of €. We then determine how many m, values are

(Continued)
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associated with each value of €. The total number of orbitals is equal to the sum of all
the m, values.

Solution For n = 3, the possible values of € are 0, 1, and 2. Thus, there is one 3s
orbital (n = 3, £ = 0, and m, = 0); there are three 3p orbitals (n = 3, € = 1, and
mg = —1, 0, 1); there are five 3d orbitals (n = 3, € = 2, and m¢, = -2, —1, 0, 1, 2).
The total number of orbitals is 1 + 3 + 5 = 9.

Check The total number of orbitals for a given value of n is n%. So here we have 3% = 9.
Can you prove the validity of this relationship?

Practice Exercise What is the total number of orbitals associated with the principal
quantum number n = 47

The Energies of Orbitals

Now that we have some understanding of the shapes and sizes of atomic orbitals, we
are ready to inquire into their relative energies and look at how energy levels affect
the actual arrangement of electrons in atoms.

According to Equation (7.5), the energy of an electron in a hydrogen atom is
determined solely by its principal quantum number. Thus, the energies of hydrogen
orbitals increase as follows (Figure 7.22):

Is<2s=2p<3s=3p=3d<4s=4dp=4d=4f<-- -

Although the electron density distributions are different in the 2s and 2p orbitals,
hydrogen’s electron has the same energy whether it is in the 2s orbital or a 2p orbital.
The 1s orbital in a hydrogen atom corresponds to the most stable condition, the ground
state. An electron residing in this orbital is most strongly held by the nucleus because
it is closest to the nucleus. An electron in the 2s, 2p, or higher orbitals in a hydrogen
atom is in an excited state.

The energy picture is more complex for many-electron atoms than for hydrogen.
The energy of an electron in such an atom depends on its angular momentum quantum
number as well as on its principal quantum number (Figure 7.23). For many-electron
atoms, the 3d energy level is very close to the 4s energy level. The total energy of an

4s = 4p = = — 4d — — — — — f = — = = = = =
3=3p===3d= = = = —
2§ = 2p = = =

Energy

Similar problem: 7.62.

Figure 7.22 Orbital energy
levels in the hydrogen atom. Each
short horizontal line represents one
orbital. Orbitals with the same
principal quantum number (n) all
have the same energy.
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Figure 7.23 Orbital energy levels
in @ many-electron atom. Note that
the energy level depends on both
n and € values.

-
/15
2s/ 2p/
/3s/ er
:4s/4p/4d/ 47
5s/5p/5d/5f/
™

/63/6p 6d
7

e s /717

Figure 7.24 The order in which
atomic subshells are filled in a
many-electron atom. Start with the
1s orbital and move downward,
following the direction of the
arrows. Thus, the order goes as
follows: 1s <2s <2p<3s<3p <
4s<3d<....

Q‘

Animation:
Electron Configurations
ARIS, Animations

4d = — = — =
55 — p —
3de= — = — —
4s —
3p= ==
o 35 -
20
2 O
= 25 — £
Is —

atom, however, depends not only on the sum of the orbital energies but also on the
energy of repulsion between the electrons in these orbitals (each orbital can accom-
modate up to two electrons, as we will see in Section 7.8). It turns out that the
total energy of an atom is lower when the 4s subshell is filled before a 3d sub-
shell. Figure 7.24 depicts the order in which atomic orbitals are filled in a many-
electron atom. We will consider specific examples in Section 7.8.

7.8 Electron Configuration

The four quantum numbers n, €, m,, and m, enable us to label completely an elec-
tron in any orbital in any atom. In a sense, we can regard the set of four quantum
numbers as the “address” of an electron in an atom, somewhat in the same way that
a street address, city, state, and postal ZIP code specify the address of an individual.
For example, the four quantum numbers for a 2s orbital electron are n = 2, =0,
me = 0, and m; = +1 or —3. It is inconvenient to write out all the individual quan-
tum numbers, and so we use the simplified notation (#, €, me, my). For the preceding
example, the quantum numbers are either (2, 0, 0, +%) or (2,0, 0, —%). The value of
m has no effect on the energy, size, shape, or orientation of an orbital, but it deter-
mines how electrons are arranged in an orbital.

Example 7.8 shows how quantum numbers of an electron in an orbital are
assigned.

Example 7.8
Write the four quantum numbers for an electron in a 3p orbital.
Strategy What do the “3” and “p” designate in 3p? How many orbitals (values of m,)

are there in a 3p subshell? What are the possible values of electron spin quantum
number?

Solution To start with, we know that the principal quantum number n is 3 and the
angular momentum quantum number € must be 1 (because we are dealing with a p
orbital).

(Continued)
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For £ = 1, there are three values of m, given by —1, 0, and 1. Because the
electron spin quantum number m, can be either +3 or —3, we conclude that there are
six possible ways to designate the electron using the (r, €, mg, m,) notation:

(3w 'la—lv +% (37 17_1v _%)
(3,1,0, +3 (3, 1,0, -3)
(3, 1,1, +3) Gyl =)

Check In these six designations we see that the values of n and € are constant, but the
values of m, and m; can vary. Similar problem: 7.58.

Practice Exercise Write the four quantum numbers for an electron in a Sp orbital.

The hydrogen atom is a particularly simple system because it contains only one
electron. The electron may reside in the s orbital (the ground state), or it may be
found in some higher-energy orbital (an excited state). For many-electron atoms, how-
ever, we must know the electron configuration of the atom, that is, how the electrons
are distributed among the various atomic orbitals, in order to understand electronic

behavior. We will use the first 10 elements (hydrogen to neon) to illustrate the rules 14 wansaoara)
for writing electron configurations for atoms in the ground state. (Section 7.9 will aE B[c[n[0

describe how these rules can be applied to the remainder of the elements in the peri-
odic table.) For this discussion, recall that the number of electrons in an atom is equal
to its atomic number Z.

Figure 7.22 indicates that the electron in a ground-state hydrogen atom must be
in the ls orbital, so its electron configuration is 1s':

denotes the number of electrons
in the orbital or subshell

e

1s'
denotes the principal A7 N denotes the angular momentum
quantum number n quantum number ¢

The electron configuration can also be represented by an orbital diagram that
shows the spin of the electron (see Figure 7.16):

H

1s!

The upward arrow denotes one of the two possible spinning motions of the electron.  Remember that the direction of etectron
(Alternatively, we could have represented the electron with a downward arrow.) The ~ 5inhas no effecton the eneray of the
box represents an atomic orbital.

The Pauli Exclusion Principle

For many-electron atoms we use the Pauli’ exclusion principle to determine electron
configurations. This principle states that no two electrons in an atom can have the
same four quantum numbers. If two electrons in an atom should have the same n, ¢,
and m, values (that is, these two electrons are in the same atomic orbital), then they

l‘

Interactivity:
Pauli Exclusion Principle
ARIS, Interactives

"Wolfgang Pauli (1900-1958). Austrian physicist. One of the founders of quantum mechanics, Pauli was
awarded the Nobel Prize in Physics in 1945.
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Electrons that have opposite spins are said
to be paired. in helium, m, = +} for one
electron; m, = —% for the other.

Figure 7.25 The (a) paralle/
and (b) antiparallel spins of two
electrons. In (a) the two magnetic
fields reinforce each other. In

(b) the two magnetic fields cancel
each other.

must have different values of m,. In other words, only two electrons may occupy the
same atomic orbital, and these electrons must have opposite spins. Consider the
helium atom, which has two electrons. The three possible ways of placing two elec-
trons in the s orbital are as follows:

He
1s? 15? 1s*
(a) (b) (c)

Diagrams (a) and (b) are ruled out by the Pauli exclusion principle. In (a), both elec-
trons have the same upward spin and would have the quantum numbers (1, 0, 0, +%);
in (b), both electrons have downward spins and would have the quantum numbers
(1,0, 0, —3). Only the configuration in (c) is physically acceptable, because one elec-
tron has the quantum numbers (1, 0, 0, +%) and the other has (1,0, 0, —%). Thus, the
helium atom has the following configuration:

He

1s°

Note that 1s° is read “one s two,” not “one s squared.”

Diamagnetism and Paramagnetism

The Pauli exclusion principle is one of the fundamental principles of quantum
mechanics. It can be tested by a simple observation. If the two electrons in the Is
orbital of a helium atom had the same, or parallel, spins (1] or |/), their net mag-
netic fields would reinforce each other [Figure 7.25(a)]. Such an arrangement would
make the helium gas paramagnetic. Paramagnetic substances are those that contain
net unpaired spins and are attracted by a magnet. On the other hand, if the electron
spins are paired, or antiparallel to each other (1| or |1), the magnetic effects cancel
out [Figure 7.25(b)]. Diamagnetic substances do not contain net unpaired spins and
are slightly repelled by a magnet.

Measurements of magnetic properties provide the most direct evidence for spe-
cific electron configurations of elements. Advances in instrument design during the
last 30 years or so enable us to determine the number of unpaired electrons in an
atom (Figure 7.26). By experiment we find that the helium atom in its ground state
has no net magnetic field. Therefore, the two electrons in the 1s orbital must be paired
in accord with the Pauli exclusion principle and the helium gas is diamagnetic. A use-
ful rule to keep in mind is that any atom with an odd number of electrons will always

(a) (b)
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contain one or more unpaired spins because we need an even number of electrons for
complete pairing. On the other hand, atoms containing an even number of electrons
may or may not contain unpaired spins. We will see the reason for this behavior
shortly.

As another example, consider the lithium atom (Z = 3) which has three electrons.
The third electron cannot go into the ls orbital because it would inevitably have the
same four quantum numbers as one of the first two electrons. Therefore, this electron
“enters” the next (energetically) higher orbital, which is the 2s orbital (see Figure 7.23).
The electron configuration of lithium is 15°2s', and its orbital diagram is

Li
15 25!

The lithium atom contains one unpaired electron and the lithium metal is therefore
paramagnetic.

The Shielding Effect in Many-Electron Atoms

Experimentally we find that the 2s orbital lies at a lower energy level than the 2p
orbital in a many-electron atom. Why? In comparing the electron configurations of
15%2s' and 1s22p1, we note that, in both cases, the 1s orbital is filled with two elec-
trons. Figure 7.27 shows the radial probability plots for the 1s, 2s, and 2p orbitals.
Because the 2s and 2p orbitals are larger than the 1s orbital, an electron in either of
these orbitals will spend more time away from the nucleus than an electron in the 1s
orbital. Thus, we can speak of a 2s or 2p electron being partly “shielded” from the
attractive force of the nucleus by the s electrons. The important consequence of the
shielding effect is that it reduces the electrostatic attraction between the protons in
the nucleus and the electron in the 2s or 2p orbital.

The manner in which the electron density varies as we move from the nucleus
outward depends on the type of orbital. Although a 2s electron spends most of its
time (on average) slightly farther from the nucleus than a 2p electron, the electron
density near the nucleus is actually greater for the 2s electron (see the small maxi-
mum for the 2s orbital in Figure 7.27). For this reason, the 2s orbital is said to be
more “penetrating” than the 2p orbital. Therefore, a 2s electron is less shielded by the
1s electrons and is more strongly held by the nucleus. In fact, for the same principal
quantum number n, the penetrating power decreases as the angular momentum quan-
tum number € increases, or

s>p>d>f>

Because the stability of an electron is determined by the strength of its attraction to
the nucleus, it follows that a 2s electron will be lower in energy than a 2p electron.
To put it another way, less energy is required to remove a 2p electron than a 2s elec-
tron because a 2p electron is not held quite as strongly by the nucleus. The hydrogen
atom has only one electron and, therefore, is without such a shielding effect.
Continuing our discussion of atoms of the first 10 elements, we go next to beryl-
lium (Z = 4). The ground-state electron configuration of beryllium is 1s22s%, or

Be
1s° 2%

Beryllium is diamagnetic, as we would expect.
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A
.,

Paramagnetic
/ substance
Electromagnet

Figure 7.26 Initially the
paramagnetic substance was
weighed on a balance. When

the electromagnet is turned on,
the balance is offset because the
sample tube is drawn into the
magnetic field. Knowing the
concentration and the additional
mass needed to reestablish
balance, it is possible to calculate
the number of unpaired electrons
in the substance.

2p

Radial probability

2s

Distance from nucleus

Figure 7.27 Radial probability
plots (see Figure 7.18) for the

1s, 2s, and 2p orbitals. The 1s
electrons effectively shield both
the 2s and 2p electrons from the
nucleus. The 2s orbital is more
penetrating than the 2p orbital.
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The electron configuration of boron (Z=15)is ls22s22p‘, or
B T 1]
152 2% 2p!

Note that the unpaired electron can be in the 2p,, 2p,, or 2p, orbital. The choice is
completely arbitrary because the three p orbitals are equivalent in energy. As the dia-
gram shows, boron is paramagnetic.

Hund’s Rule

The electron configuration of carbon (Z = 6) is 1s22s22p2. The following are differ-
ent ways of distributing two electrons among three p orbitals:

WL O] O]

2px 2py 2p.  2p.2p,2p, 2p,2p,2p,
(a) b ©)

None of the three arrangements violates the Pauli exclusion principle, so we must
determine which one will give the greatest stability. The answer is provided by Hund’s
rule,’ which states that the most stable arrangement of electrons in subshells is the
one with the greatest number of parallel spins. The arrangement shown in (c) satis-
fies this condition. In both (a) and (b) the two spins cancel each other. Thus, the orbital
diagram for carbon is

c T[T
1s? 252 2p?

Qualitatively, we can understand why (c) is preferred to (a). In (a), the two
electrons are in the same 2p, orbital, and their proximity results in a greater
mutual repulsion than when they occupy two separate orbitals, say 2p, and 2p,.
The choice of (c) over (b) is more subtle but can be justified on theoretical
grounds. The fact that carbon atoms contain two unpaired electrons is in accord
with Hund’s rule.

The electron configuration of nitrogen (Z = 7) is 15225%2p>:

N
152 252 2p

Again, Hund’s rule dictates that all three 2p electrons have spins parallel to one
another; the nitrogen atom contains three unpaired electrons.

The electron configuration of oxygen (Z = 8) is 15*2s%2p*. An oxygen atom has
two unpaired electrons:

0
152 22 2p*

"Frederick Hund ( 1896-1997). German physicist. Hund’s work was mainly in quantum mechanics. He also
helped to develop the molecular orbital theory of chemical bonding.
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The electron configuration of fluorine (Z = 9) is 15s?25%2p°. The nine electrons
are arranged as follows:

F
152 252 2p°

The fluorine atom has one unpaired electron.
In neon (Z = 10), the 2p subshell is completely filled. The electron configura-
tion of neon is 15?2s%2p%, and all the electrons are paired, as follows:

Ne
1s? 2s% 2p°

The neon gas should be diamagnetic, and experimental observation bears out this
prediction.

General Rules for Assigning Electrons to Atomic Orbitals

Based on the preceding examples we can formulate some general rules for determin-
ing the maximum number of electrons that can be assigned to the various subshells
and orbitals for a given value of n:

1. Each shell or principal level of quantum number # contains n subshells. For exam-
ple, if n = 2, then there are two subshells (two values of €) of angular momen-
tum quantum numbers O and 1.

2. Each subshell of quantum number € contains (2€ + 1) orbitals. For example, if
£ = 1, then there are three p orbitals.

3. No more than two electrons can be placed in each orbital. Therefore, the maxi-
mum number of electrons is simply twice the number of orbitals that are employed.

4. A quick way to determine the maximum number of electrons that an atom can
have in a principal level n is to use the formula 2n2,

Examples 7.9 and 7.10 illustrate the procedure for calculating the number of elec-
trons in orbitals and labeling electrons with the four quantum numbers.

Example 7.9

What is the maximum number of electrons that can be present in the principal level for
which n = 3?

Strategy We are given the principal quantum number (1) so we can determine all the
possible values of the angular momentum quantum number (€). The preceding rule shows
that the number of orbitals for each value of € is (2€ + 1). Thus, we can determine the
total number of orbitals. How many electrons can each orbital accommodate?

Solution When n = 3, € = 0, 1, and 2. The number of orbitals for each value of € is
given by
Number of Orbitals

Value of ¢ ¢+ 1)
0 1
1 3
2 5

(Continued)

Q‘

Interactivity:
Orbital Filling Rules
ARIS, Interactives
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The total number of orbitals is nine. Because each orbital can accommodate two electrons,
the maximum number of electrons that can reside in the orbitals is 2 X 9, or 18.

Check If we use the formula (%) in Example 7.7, we find that the total number of
orbitals is 32 and the total number of electrons is 2(32) or 18. In general, the number of
Similar problems: 7.64, 7.65. electrons in a given principal energy level n is 2n?.

Practice Exercise Calculate the total number of electrons that can be present in the
principal level for which n = 4.

Example 7.10

An oxygen atom has a total of eight electrons. Write the four quantum numbers for
each of the eight electrons in the ground state.

Strategy We start with n = 1 and proceed to fill orbitals in the order shown in
Figure 7.24. For each value of n we determine the possible values of £. For each
value of €, we assign the possible values of m,. We can place electrons in the orbitals
according to the Pauli exclusion principle and Hund’s rule.

Solution We start with n = 1, so £ = 0, a subshell corresponding to the 1s orbital.
This orbital can accommodate a total of two electrons. Next, n = 2, and £ may be
either 0 or 1. The € = O subshell contains one 2s orbital, which can accommodate two
electrons. The remaining four electrons are placed in the £ = 1 subshell, which contains
three 2p orbitals. The orbital diagram is

0
1s% 252 2p*

The results are summarized in the following table:

Electron n £ me m Orbital

1

1 1 0 0 +% | .

2 1 0 0 -1
1

3 2 0 0 +% 2

4 2 0 0 -1

5 2 1 -1 +1

6 2 1 0 +1

- ) 1 1 +1 2p., 2py. 2p,

8 2 1 1 -1

Of course, the placement of the eighth electron in the orbital labeled me = 1 is
Similar problem: 7.91. completely arbitrary. It would be equally correct to assign it to m; = 0 or m¢ = —1.

Practice Exercise Write a complete set of quantum numbers for each of the electrons
in boron (B).

7.9 The Building-Up Principle

Here we will extend the rules used in writing electron configurations for the first 10

™ . . elements to the rest of the elements. This process is based on the Aufbau principle.
e German word “Aufbau” means .. A

“puilding up.” The Aufbau principle dictates that as protons are added one by one to the nucleus
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to build up the elements, electrons are similarly added to the atomic orbitals. Through
this process we gain a detailed knowledge of the ground-state electron configurations
of the elements. As we will see later, knowledge of electron configurations helps us
to understand and predict the properties of the elements; it also explains why the peri-
odic table works so well.

Table 7.3 gives the ground-state electron configurations of elements from H
(Z = 1) through Rg (Z = 111). The electron configurations of all elements except
hydrogen and helium are represented by a noble gas core, which shows in brackets
the noble gas element that most nearly precedes the element being considered, fol-
lowed by the symbol for the highest filled subshells in the outermost shells. Notice
that the electron configurations of the highest filled subshells in the outermost shells
for the elements sodium (Z = 11) through argon (Z = 18) follow a pattern similar to
those of lithium (Z = 3) through neon (Z = 10).

As mentioned in Section 7.7, the 4s subshell is filled before the 3d subshell in a
many-electron atom (see Figure 7.24). Thus, the electron configuration of potassium
(Z=19)is 15225%2p%35°3p®4s'. Because 1s225221)63s23p6 is the electron configuration
of argon, we can simplify the electron configuration of potassium by writing [Ar]4s',
where [Ar] denotes the “argon core.” Similarly, we can write the electron configuration
of calcium (Z = 20) as [Ar]4s®. The placement of the outermost electron in the 4s
orbital (rather than in the 3d orbital) of potassium is strongly supported by experimen-
tal evidence. The following comparison also suggests that this is the correct configura-
tion. The chemistry of potassium is very similar to that of lithium and sodium, the first
two alkali metals. The outermost electron of both lithium and sodium is in an s orbital
(there is no ambiguity in assigning their electron configurations); therefore, we expect
the last electron in potassium to occupy the 4s rather than the 3d orbital.

The elements from scandium (Z = 21) to copper (Z = 29) are transition metals.
Transition metals either have incompletely filled d subshells or readily give rise to
cations that have incompletely filled d subshells. Consider the first transition metal
series, from scandium through copper. In this series additional electrons are placed in
the 3d orbitals, according to Hund’s rule. However, there are two irregularities. The
electron configuration of chromium (Z = 24) is [Ar]4s'34° and not [Ar]4s23d*, as we
might expect. A similar break in the pattern is observed for copper, whose electron
configuration is [Ar}4s'3d"° rather than [Ar]4s?3d°. The reason for these irregulari-
ties is that a slightly greater stability is associated with the half-filled (3d°) and com-
pletely filled (3d"%) subshells. Electrons in the same subshell (in this case, the d
orbitals) have equal energy but different spatial distributions. Consequently, their
shielding of one another is relatively small, and the electrons are more strongly
attracted by the nucleus when they have the 3d® configuration. According to Hund’s
rule, the orbital diagram for Cr is

Cr [Ar]
4s' 3d°
Thus, Cr has a total of six unpaired electrons. The orbital diagram for copper is
Cu A
4s' 3d"°

Again, extra stability is gained in this case by having the 3d subshell completely filled.

For elements Zn (Z = 30) through Kr (Z = 36), the 4s and 4p subshells fill in a
straightforward manner. With rubidium (Z = 37), electrons begin to enter the n = 5
energy level.
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ILUI A &N The Ground-State Electron Configurations of the Elements*

Atomic Electron Atomic Electron Atomic Electron
Number Symbol Configuration Number Symbol Configuration Number Symbol Configuration

1 H Is' 38 Sr {Kr]5s? 75 Re [Xel6s24f 4545
2! He 12 39 Y [Kr]55%4d" 76 " Os [Xel6s24f1454 6
3 Li [He]2s' 40 Zr [Kr]55°4d> 77 Ir [Xel6s24f 4547
4 Be [He]2s? 41 Nb [Kr]5s'4d* 78 Pt [Xe]6s'4f'454°
5 B [Hel2s%2p' 42 Mo [Kr)5s'4d® 79 Au [Xel6s'4f 4540
6 C [He]25%2p? 43 Tc [Kr]5s%44° 80 Hg [Xe]6s%4f 45410
7 N [He]2s%2p° 44 Ru [Kr)5s'4d” 81 Tl [Xel6s?4f'*54"%p!
8 o} [He]25%2p* 45 Rh [Kr]5s'4d® 82 Pb [Xel6s’4f'*54'%6p>
9 F [He]2s%2p° 46 Pd [Kr]4q"® 83 Bi [Xel6s’4f'*54'%6p>
10 Ne [He]2s*2p° 47 Ag [Kr]5s'44'° 84 Po [Xel6s’4f"*54"%6p*
11 Na [Ne]3s’ 48 Cd [Kr]55%44"'° 85 At [Xel6s°4f'*54'6p°
12 Mg  [Nel3s? 49 In [Kr]5s%4d'%5p! 86 Rn [Xel6s%4f'*54'"%6p°
13 Al [Ne]3s%3p 50 Sn [Kr]55%4d'%5p? 87 Fr [Rn]7s’
14 Si [Ne]3s%3p? 51 Sb [Kr]55%44'%5p° 88 Ra [Rn}7s?
15 P [Ne]3s*3p° 52 Te [Kr]5s%4d'%5p* 89 Ac [Rn]7s%64"
16 S [Ne]3s?3p* 53 I [Kr)55%4d'%5p° 90 Th [Rn]75°64>
17 al [Ne]3s%3p° 54 Xe  [Kr]5s%4d'%5p® 91 Pa [Rn]75%5f%64"
18 Ar [Ne]3s?3p® 55 Cs [Xel6s' 92 U [Rn)7s%5%6d"
19 K [Ar]4s' 56 Ba [Xe]6s? 93 Np  [Rn]75°5%d"
20 Ca [Ar)4s® 57 La [Xe)6s25d" 94 Pu [Rn]7s%5f¢
21 Sc [Ar]4s23d" 58 Ce [Xel6s24f 54! 95 Am  [Rn]7s*5f7
22 Ti [Ar)4s?34° 59 Pr [Xe]6s%4f° 96 Cm  [Rn]75*5f76d"
23 \' [Ar)4s334° 60 Nd  [Xe]6s%4f* 97 Bk [Rn]7s%5f°
24 Cr [Ar)4s'3d° 61 Pm  [Xe]6s%4f> 98 Cf [Rn]7s%5f'°
25 Mn  [Ar}4s®3d° 62 Sm  [Xe]65%4f° 99 Es [Rn]7s°5f"!
26 Fe [Ar)45234° 63 Eu [Xel6s%4f” 100 Fm [Rn]7s?5f"?
27 Co [Ar)4s?3d” 64 Gd [Xe)6s%4f75d" 101 Md  [Rn]7s%5f"3
28 Ni [Ar]4s234® 65 Tb [Xe]l6s%4f° 102 No [Rn] 75257
29 Cu [Ar]4s'34'° 66 Dy  [Xel6s%4f'° 103  Lr [Rn]7s?5f"%6d"
30 Zn [Ar]4s?34"° 67 Ho [Xel6s%4f"! 104 Rf [Rn]75°5f" 64>
31 Ga [Ar]4s°34'%4p' 68 Er [Xe]6s%4f'2 105 Db [Rn]7s%5f! 464>
32 Ge [Ar]4s%34'04p? 69 Tm  [Xel6s%4f"? 106 Sg [Rn]7s%5f6d*
33 As [Ar]4s?34'04p> 70 Yb  [Xel6s4f'4 107 Bh [Rn)7s%5f%6d°
34 Se [Ar]4s*3d'%4p* 71 Lu [Xel6s%4f'454" 108 Hs [Rn]7s%5f1%6d°
35 Br [Ar]4s*34'%4p° 72 Hf [Xel6s24f 4542 109 Mt [Rn]7s%5f*6d”
36 Kr [Ar]4s*3d'%4p® 73 Ta [Xel6s24f 454° 110 Ds [Rn]7s%5f 464"
37 Rb (Kr]5s! 74 \ [Xel6s24f 454+ 111 Rg [Rn]7s%5f%6d°

*The symbol [He] is called the helium core and represents 152 [Ne] is called the neon core and represents 15°25°2p%. [Ar] is called the argon core and represents
[Ne]3s*3p°. [Kr] is-called the krygton core and represents [Ar]4s°3d'%4p®. [Xe] is called the xenon core and represents [Kr]5s?4d'°5pS. [Rn] is called the radon core
and represents [Xe]6s%4f 454" %p®.



7.9 The Building-Up Principle
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The electron configurations in the second transition metal series [yttrium (Z = 39)
to silver (Z = 47)] are also irregular, but we will not be concerned with the details here.

The sixth period of the periodic table begins with cesium (Z = 55) and barium
(Z = 56), whose electron configurations are [Xel6s' and [Xe)6s?, respectively. Next we
come to lanthanum (Z = 57). From Figure 7.24 we would expect that after filling the 6s
orbital we would place the additional electrons in 4f orbitals. In reality, the energies of
the 5d and 4f orbitals are very close; in fact, for lanthanum 4f is slightly higher in energy
than 5d. Thus, lanthanum’s electron configuration is [Xe]6s%5d" and not [Xe]6s24f'.

Following lanthanum are the 14 elements known as the lanthanides, or rare earth
series [cerium (Z = 58) to lutetium (Z = 71)]. The rare earth metals have incompletely
filled 4f subshells or readily give rise to cations that have incompletely filled 4f subshells.
In this series, the added electrons are placed in 4f orbitals. After the 4f subshell is com-
pletely filled, the next electron enters the 5d subshell of lutetium. Note that the electron
configuration of gadolinium (Z = 64) is [Xe]6s°4f’5d" rather than [Xe)6s°4f®. Like
chromium, gadolinium gains extra stability by having a half-filled subshell (4f”).

The third transition metal series, including lanthanum and hafnium (Z = 72) and
extending through gold (Z = 79), is characterized by the filling of the 5d subshell.
The 6s and 6p subshells are filled next, which takes us to radon (Z = 86).

The last row.of elements is the actinide series, which starts at thorium (Z = 90).
Most of these elements are not found in nature but have been synthesized.

With few exceptions, you should be able to write the electron configuration of
any element, using Figure 7.24 as a guide. Elements that require particular care are
the transition metals, the lanthanides, and the actinides. As we noted earlier, at larger
values of the principal quantum number n, the order of subshell filling may reverse
from one element to the next. Figure 7.28 groups the elements according to the type
of subshell in which the outermost electrons are placed.

Example 7.11
Write the ground-state electron configurations for (a) sulfur (S) and (b) palladium (Pd),
which is diamagnetic.

(Continued)
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Figure 7.28 Ciassification of
groups of elements in the periodic
table according to the type of
subshell being filled with electrons.
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Similar problems: 7.87, 7.88.

(a) Strategy How many electrons are in the S (Z = 16) atom? We start with n = 1
and proceed to fill orbitals in the order shown in Figure 7.24. For each value of ¢, we
assign the possible values of m,. We can place electrons in the orbitals according to the
Pauli exclusion principle and Hund’s rule and then write the electron configuration. The
task is simplified if we use the noble-gas core preceding S for the inner electrons.

Solution Sulfur has 16 electrons. The noble gas core in this case is [Ne]. (Ne is the
noble gas in the period preceding sulfur.) [Ne] represents 15?25%2p°. This leaves us 6
electrons to fill the 3s subshell and partially fill the 3p subshell. Thus, the electron

configuration of S is 15°25°2p®35%3p* or [Nel3s%3p* .

(b) Strategy We use the same approach as that in (a). What does it mean to say that
Pd is a diamagnetic element?

Solution Palladium has 46 electrons. The noble-gas core in this case is [Kr]. (Kr is the
noble gas in the period preceding palladium.) [Kr] represents
1s22s22p63s23p64s23d1°4p6

The remaining 10 electrons are distributed among the 44 and 5s orbitals. The three
choices are (1) 44", (2) 4d°5s', and (3) 4d®55>. Because palladium is diamagnetic, all
the electrons are paired and its electron configuration must be

ls22s22p63.s‘23p‘54s23dl(’41)64d10
or simply [Kr]4d'® . The configurations in (2) and (3) both represent paramagnetic elements.

Check To confirm the answer, write the orbital diagrams for (1), (2), and (3).

Practice Exercise Write the ground-state electron configuration for phosphorus (P).

Summary of Facts and Concepts

1. The quantum theory developed by Planck successfully
explains the emission of radiation by heated solids. The
quantum theory states that radiant energy is emitted by
atoms and molecules in small discrete amounts
(quanta), rather than over a continuous range. This be-
havior is governed by the relationship E = hv, where E
is the energy of the radiation, 4 is Planck’s constant, and
v is the frequency of the radiation. Energy is always
emitted in whole-number multiples of hv (1 hv, 2 hv,

3hv,...).

2. Using quantum theory, Einstein solved another mys-
tery of physics—the photoelectric effect. Einstein
proposed that light can behave like a stream of parti-

cles (photons).

3. The line spectrum of hydrogen, yet another mystery
to nineteenth-century physicists, was also explained
by applying the quantum theory. Bohr developed a
model of the hydrogen atom in which the energy of its
single electron is quantized—limited to certain en-
ergy values determined by an integer, the principal

quantum number.

ol a’n‘m 4

4. An electron in its most stable energy state is said to be

in the ground state, and an electron at an energy level
higher than its most stable state is said to be in an ex-
cited state. In the Bohr model, an electron emits a pho-
ton when it drops from a higher-energy state (an excited
state) to a lower-energy state (the ground state or an-
other, less excited state). The release of specific
amounts of energy in the form of photons accounts for
the lines in the hydrogen emission spectrum.

- De Broglie extended Einstein’s wave-particle descrip-

tion of light to all matter in motion. The wavelength of
a moving particle of mass m and velocity u is given by
the de Broglie equation A = A/mu.

. The Schrédinger equation describes the motions and

energies of submicroscopic particles. This equation
launched quantum mechanics and a new era in physics.

. The Schrodinger equation tells us the possible energy

states of the electron in a hydrogen atom and the proba-
bility of its location in a particular region surrounding
the nucleus. These results can be applied with reason-
able accuracy to many-electron atoms.



8.

10.

An atomic orbital is a function (i) that defines the
distribution of electron density (%) in space. Orbitals
are represented by electron density diagrams or bound-
ary surface diagrams.

Four quantum numbers characterize each electron in an
atom: the principal quantum number n identifies the
main energy level, or shell, of the orbital; the angular
momentum quantum number € indicates the shape of
the orbital; the magnetic quantum number m, specifies
the orientation of the orbital in space; and the electron
spin quantum number m; indicates the direction of the
electron’s spin on its own axis.

The single s orbital for each energy level is spherical
and centered on the nucleus. The three p orbitals present
at n = 2 and higher; each has two lobes, and the pairs
of lobes are arranged at right angles to one another.
Starting with n = 3, there are five d orbitals, with more
complex shapes and orientations.

Key Words

Actinide series, p. 301 Electron
Amplitude, p. 268 configuration, p. 293
Atomic orbital, p. 285 Electron density, p. 285
Aufbau principle, p. 298 Emission
Boundary surface spectra, p. 274
diagram, p. 288 Excited level (or
Diamagnetic, p. 294 state), p. 276
Electromagnetic Frequency (v), p. 268
radiation, p. 269 Ground level (or
Electromagnetic state), p. 276
wave, p. 269 Ground state, p. 276

Questions and Problems

Quantum Theory and
Electromagnetic Radiation

Review Questions

7.1

7.2

73

74

What is a wave? Explain the following terms associ-
ated with waves: wavelength, frequency, amplitude.

What are the units for wavelength and frequency of
electromagnetic waves? What is the speed of light in
meters per second and miles per hour?

List the types of electromagnetic radiation, starting
with the radiation having the longest wavelength and
ending with the radiation having the shortest wave-
length.

Give the high and low wavelength values that define
the visible region of the electromagnetic spectrum.

11.

12.

13.

14.
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The énergy of the electron in a hydrogen atom is deter-
mined solely by its principal quantum number. In
many-electron atoms, the principal quantum number
and the angular momentum quantum number together
determine the energy of an electron.

No two electrons in the same atom can have the same
four quantum numbers (the Pauli exclusion principle).
The most stable arrangement of electrons in a subshell
is the one that has the greatest number of parallel spins
(Hund’s rule). Atoms with one or more unpaired elec-
tron spins are paramagnetic. Atoms in which all elec-
trons are paired are diamagnetic.

The Aufbau principle provides the guideline for
building up the elements. The periodic table classifies
the elements according to their atomic numbers and
thus also by the electronic configurations of their
atoms.

Sl Lo AT A
IS

Heisenberg uncertainty Pauli exclusion
principle, p. 284 principle, p. 293
Hund’s rule, p. 296 Photoelectric
Lanthanide (rare earth) effect, p. 272
series, p. 301 Photon, p. 272
Line spectra, p. 274 Quantum, p. 272
Many-electron Quantum numbers, p. 286
atom, p. 286 Rare earth series, p. 301
Noble gas core, p. 299 Transition metals, p. 299
Node, p. 279 Wave, p. 268
Paramagnetic, p. 294 Wavelength (A), p. 268

7.5

7.6

e e
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Briefly explain Planck’s quantum theory and explain
‘what a quantum is. What are the units for Planck’s
constant?

Give two everyday examples that illustrate the con-
cept of quantization.

Problems

1.7

7.8

(a) What is the wavelength (in nanometers) of light hav-
ing a frequency of 8.6 X 10'* Hz? (b) What is the fre-
quency (in Hz) of light having a wavelength of 566 nm?
(2) What is the frequency of light having a wavelength
of 456 nm? (b) What is the wavelength (in nanometers)
of radiation having a frequency of 2.45 X 10° Hz?
(This is the type of radiation used in microwave ovens.)
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7.10

7.11

7.12
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The average distance between Mars and Earth is about
1.3 X 10® miles. How long would it take TV pictures
transmitted from the Viking space vehicle on Mars’
surface to reach Earth? (1 mile = 1.61 km.)

How many minutes would it take a radio wave to
travel from the planet Venus to Earth? (Average dis-
tance from Venus to Earth = 28 million miles.)

The SI unit of time is the second, which is defined as
9,192,631,770 cycles of radiation associated with a
certain emission process in the cesium atom. Calcu-
late the wavelength of this radiation (to three signifi-
cant figures). In which region of the electromagnetic
spectrum is this wavelength found?

The SI unit of length is the meter, which is defined as
the length equal to 1,650,763.73 wavelengths of the
light emitted by a particular energy transition in kryp-
ton atoms. Calculate the frequency of the light to three
significant figures.

The Photoelectric Effect
Review Questions

7.13
7.14

Explain what is meant by the photoelectric effect.

What are photons? What role did Einstein’s explana-
tion of the photoelectric effect play in the develop-
ment of the particle-wave interpretation of the nature
of electromagnetic radiation?

Problems

7.15

7.16

7.17

7.18

7.19

7.20

A photon has a wavelength of 624 nm. Calculate the
energy of the photon in joules.

The blue color of the sky results from the scattering of -

sunlight by air molecules. The blue light has a fre-
quency of about 7.5 X 10'* Hz. (a) Calculate the
wavelength, in nm, associated with this radiation, and
(b) calculate the energy, in joules, of a single photon
associated with this frequency.

A photon has a frequency of 6.0 X 10* Hz. (a) Con-
vert this frequency into wavelength (nm). Does this
frequency fall in the visible region? (b) Calculate the
energy (in joules) of this photon. (c) Calculate the
energy (in joules) of 1 mole of photons all with this
frequency.

What is the wavelength, in nm, of radiation that has an
energy content of 1.0 X 10> kJ/mol? In which region
of the electromagnetic spectrum is this radiation
found?

When copper is bombarded with high-energy elec-
trons, X rays are emitted. Calculate the energy (in
joules) associated with the photons if the wavelength
of the X rays is 0.154 nm.

A particular form of electromagnetic radiation has a
frequency of 8.11 X 10'* Hz. (a) What is its wave-
length in nanometers? In meters? (b) To what region
of the electromagnetic spectrum would you assign it?

(c) What is the energy (in joules) of one quantum of
this radiation?

Bohr’s Theory of the Hydrogen Atom
Review Questions

7.21

7.22

7.23

7.24

What are emission spectra? How do line spectra differ
from continuous spectra?

What is an energy level? Explain the difference be-
tween ground state and excited state.

Briefly describe Bohr’s theory of the hydrogen atom
and how it explains the appearance of an emission
spectrum. How does Bohr’s theory differ from con-
cepts of classical physics?

Explain the meaning of the negative sign in Equation
(7.5).

Problems

7.25

7.26

7.27

7.28

7.29

7.30

7.31

7.32

Explain why elements produce their own characteris-
tic colors when they emit photons?

Some copper compounds emit green light when they
are heated in a flame. How would you determine
whether the light is of one wavelength or a mixture of
two or more wavelengths?

Is it possible for a fluorescent material to emit radia-
tion in the ultraviolet region after absorbing visible
light? Explain your answer.

Explain how astronomers are able to tell which ele-
ments are present in distant stars by analyzing the
electromagnetic radiation emitted by the stars.
Consider the following energy levels of a hypothetical
atom:

E, —-1.0%x 10717
E; —5.0%x 10717
E, -10 X 107197
E, —15 x 10797

(a) What is the wavelength of the photon needed to ex-
cite an electron from E; to E,? (b) What is the energy
(in joules) a photon must have in order to excite an
electron from E, to E;? (c) When an electron drops
from the E; level to the E, level, the atom is said to un-
dergo emission. Calculate the wavelength of the pho-
ton emitted in this process.

The first line of the Balmer series occurs at a wave-
length of 656.3 nm. What is the energy difference be-
tween the two energy levels involved in the emission
that results in this spectral line?

Calculate the wavelength (in nanometers) of a photon
emitted by a hydrogen atom when its electron drops
from the n = 5 state to the n = 3 state.

Calculate the frequency (Hz) and wavelength (nm) of
the emitted photon when an electron drops from the
n = 4 to the n = 2 level in a hydrogen atom.



7.33 Careful spectral analysis shows that the familiar yel-
low light of sodium lamps (such as street lamps) is
made up of photons of two wavelengths, 589.0 nm and
589.6 nm. What is the difference in energy (in joules)
between photons with these wavelengths?

7.34 An electron in the hydrogen atom makes a transition
from an energy state of principal quantum numbers #;
to the n = 2 state. If the photon emitted has a wave-
length of 434 nm, what is the value of n;?

Particle-Wave Duality
Review Questions

7.35 Explain the statement, Matter and radiation have a
“dual nature.”

7.36 How does de Broglie’s hypothesis account for the fact
that the energies of the electron in a hydrogen atom
are quantized?

7.37 Why is Equation (7.8) meaningful only for submicro-
scopic particles, such as electrons and atoms, and not
for macroscopic objects?

7.38 Does a baseball in flight possess wave properties? If
so, why can we not determine its wave properties?

Problems

7.39 Thermal neutrons are neutrons that move at speeds com-
parable to those of air molecules at room temperature.
These neutrons are most effective in initiating a nuclear
chain reaction among 2>°U isotopes. Calculate the
wavelength (in nm) associated with a beam of neu-
trons moving at 7.00 X 10% m/s. (Mass of a neutron =
1.675 x 10~ *" kg.)

7.40 Protons can be accelerated to speeds near that of light
in particle accelerators. Estimate the wavelength (in
nm) of such a proton moving at 2.90 X 10® m/s.
(Mass of a proton = 1.673 X 107 kg.)

7.41 What is the de Broglie wavelength, in cm, of a 12.4-g
hummingbird flying at 1.20 X 102 mph? (1 mile =
1.61 km.)

7.42 What is the de Broglie wavelength (in nm) associated
with a 2.5-g Ping-Pong ball traveling 35 mph?

Quantum Mechanics
Review Questions

7.43 What are the inadequacies of Bohr’s theory?

7.44 What is the Heisenberg uncertainty principle? What is
the Schridinger equation?

7.45 What is the physical significance of the wave function?

7.46 How is the concept of electron density used to de-
scribe the position of an electron in the quantum me-
chanical treatment of an atom?

7.47 What is an atomic orbital? How does an atomic orbital
differ from an orbit?
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Atomic Orbitals
Review Questions

7.48 Describe the shapes of s, p, and d orbitals. How are these
orbitals related to the quantum numbers 7, £, and m?

7.49 List the hydrogen orbitals in increasing order of energy.

7.50 Describe the characteristics of an s orbital, a p orbital,
and a d orbital. Which of the following orbitals do not
exist: 1p, 25, 2d, 3p, 3d, 3f, 4g?

7.51 Why is a boundary surface diagram useful in repre-
senting an atomic orbital?

7.52 Describe the four quantum numbers used to character-
ize an electron in an atom.

7.53 Which quantum number defines a shell? Which quan-
tum numbers define a subshell?

7.54 Which of the four quantum numbers (n, €, m, m;)
determine (a) the energy of an electron in a hydrogen
atom and in a many-electron atom, (b) the size of an
orbital, (c) the shape of an orbital, (d) the orientation
of an orbital in space?

Problems

7.55 An electron in a certain atom is in the n = 2 quantum
level. List the possible values of € and m, that it can have.

7.56 An electron in an atom is in the n = 3 quantum level.
List the possible values of € and m, that it can have.

7.57 Give the values of the quantum numbers associated
with the following orbitals: (a) 2p, (b) 3s, (¢) 5d.

7.58 Give the values of the four quantum numbers of an
electron in the following orbitals: (a) 3s, (b) 4p, (c) 3d.

7.59 Discuss the similarities and differences between a 1s
and a 2s orbital.

7.60 What is the difference between a 2p, and a 2p, orbital?
7.61 List all the possible subshells and orbitals associated
with the principal quantum number n, if n = 5.

7.62 List all the possible subshells and orbitals associated
with the principal quantum number n, if n = 6.

7.63 Calculate the total number of electrons that can oc-
cupy (a) one s orbital, (b) three p orbitals, (c) five d or-
bitals, (d) seven f orbitals.

7.64 What is the total number of electrons that can be held
in all orbitals having the same principal quantum
number n?

7.65 Determine the maximum number of electrons that can
be found in each of the following subshells: 3s, 34, 4p,
4f, 5f.

7.66 Indicate the total number of (a) p electrons in N
(Z = 7); (b) s electrons in Si (Z = 14); and (c) 3d
electrons in S (Z = 16).

7.67 Make a chart of all allowable orbitals in the first four
principal energy levels of the hydrogen atom. Desig-
nate each by type (for example, s, p) and indicate how
many orbitals of each type there are.
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7.68

7.69

7.70
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Why do the 3s, 3p, and 3d orbitals have the same en-
ergy in a hydrogen atom but different energies in a
many-electron atom?

For each of the following pairs of hydrogen orbitals,
indicate which is higher in energy: (a) 1s, 2s; (b) 2p,
3p; (¢) 3d,y, 3d,; (d) 3s, 3d; (e) 4f, 5s.

Which orbital in each of the following pairs is lower in
energy in a many-electron atom? (a) 2s, 2p; (b) 3p, 3d;
(¢) 3s, 4s; (d) 4d, 5f.

Electron Configuration
Review Questions

7.71

7.72
7.73

7.74

What is electron configuration? Describe the roles that
the Pauli exclusion principle and Hund’s rule play in
writing the electron configuration of elements.
Explain the meaning of the symbol 4d°.

Explain the meaning of diamagnetic and paramag-
netic. Give an example of an element that is diamag-
netic and one that is paramagnetic. What does it mean
when we say that electrons are paired?

What is meant by the term “shielding of electrons” in
an atom? Using the Li atom as an example, describe
the effect of shielding on the energy of electrons in an
atom.

Problems

7.75

7.76

7.77

7.78

Indicate which of the following sets of quantum num-
bers in an atom are unacceptable and explain why:
@ (1, 0,3, 3), (b) (3, 0,0, +3), () (2, 2, 1, +1),
(d) (4,3, -2, +3),() (3,2, 1, 1).

The ground-state electron configurations listed here -

are incorrect. Explain what mistakes have been made
in each and write the correct electron configurations.

AL 15%25%2p*35%3p*

B: 15%25%2p°

F: 15%2522p°

The atomic number of an element is 73. Is this ele-
ment diamagnetic or paramagnetic?

Indicate the number of unpaired electrons present in
each of the following atoms: B, Ne, P, Sc, Mn, Se, Kr,
Fe, Cd, I, Pb.

The Building-Up Principle
Review Questions

7.79

7.80

7.81

7.82

State the Aufbau principle and explain the role it plays
in classifying the elements in the periodic table.
Describe the characteristics of the following groups of
elements: transition metals, lanthanides, actinides.
What is the noble gas core? How does it simplify the
writing of electron configurations?

What are the group and period of the element
osmium?

7.83

7.84

7.85

7.86

Define the following terms and give an example of
each: transition metals, lanthanides, actinides.
Explain why the ground-state electron configurations
of Cr and Cu are different from what we might expect.
Explain what is meant by a noble gas core. Write the
electron configuration of a xenon core.

Comment on the correctness of the following state-
ment: The probability of finding two electrons with
the same four quantum numbers in an atom is zero.

Problems

7.87

7.88

7.89

7.90

7.91

7.92

Use the Aufbau principle to obtain the ground-state
electron configuration of selenium.

Use the Aufbau principle to obtain the ground-state
electron configuration of technetium.

Write the ground-state electron configurations for the
following elements: B, V, Ni, As, I, Au.

Write the ground-state electron configurations for the
following elements: Ge, Fe, Zn, Ni, W, TL

The electron configuration of a neutral atom is
15%25°2p°35%. Write a complete set of quantum num-
bers for each of the electrons. Name the element.
Which of the following species has the most unpaired
electrons? S*, S, or § . Explain how you arrive at
your answer.

Additional Problems

7.93

7.94

7.95

7.96

7.97

7.98

When a compound containing cesium ion is heated in
a Bunsen burner flame, photons with an energy of
4.30 X 107'° J are emitted. What color is the cesium
flame?

Discuss the current view of the correctness of the fol-
lowing statements. (a) The electron in the hydrogen
atom is in an orbit that never brings it closer than
100 pm to the nucleus. (b) Atomic absorption spectra
result from transitions of electrons from lower to
higher energy levels. (c) A many-electron atom be-
haves somewhat like a solar system that has a number
of planets.

Distinguish carefully between the following terms:
(a) wavelength and frequency, (b) wave properties and
particle properties, (c) quantization of energy and con-
tinuous variation in energy.

What is the maximum number of electrons in an atom
that can have the following quantum numbers? Spec-
ify the orbitals in which the electrons would be found.
@n=2,m=+50n=4m=+1;(c)n = 3,
€=2(dn=2€¢=0,m=—1()n=4¢=3,
me = =2,

Identify the following individuals and their contribu-
tions to the development of quantum theory: Bohr, de
Broglie, Einstein, Planck, Heisenberg, Schrodinger.
What properties of electrons are used in the operation
of an electron microscope?



7.99 In a photoelectric experiment a student uses a light
source whose frequency is greater than that needed to
eject electrons from a certain metal. However, after
continuously shining the light on the same area of the
metal for a long period of time the student notices that
the maximum kinetic energy of ejected electrons be-
gins to decrease, even though the frequency of the
light is held constant. How would you account for this
behavior?

7.100 A certain pitcher’s fastballs have been clocked at
about 100 mph. (a) Calculate the wavelength of a
0.141-kg baseball (in nm) at this speed. (b) What is the
wavelength of a hydrogen atom at the same speed?
(1 mile = 1609 m.)

7.101 Considering only the ground-state electron configura-
tion, are there more diamagnetic or paramagnetic ele-
ments? Explain.

7.102 A ruby laser produces radiation of wavelength 633 nm
in pulses whose duration is 1.00 X 10~°s. (a) If the
laser produces 0.376 J of energy per pulse, how many
photons are produced in each pulse? (b) Calculate the
power (in watts) delivered by the laser per pulse.
AW =11Js)

7.103 A 368-g sample of water absorbs infrared radiation at
1.06 X 10* nm from a carbon dioxide laser. Suppose
all the absorbed radiation is converted to heat. Calcu-
late the number of photons at this wavelength required
to raise the temperature of the water by 5.00°C.

7.104 Photodissociation of water
H,0()) + hv — Hy(g) + 304(8)

has been suggested as a source of hydrogen. The
AH?,, for the reaction, calculated from thermochemi-
cal data, is 285.8 kJ per mole of water decomposed.
Calculate the maximum wavelength (in nm) that
would provide the necessary energy. In principle, is it
feasible to use sunlight as a source of energy for this
process?

7.105 Spectral lines of the Lyman and Balmer series do not
overlap. Verify this statement by calculating the
longest wavelength associated with the Lyman series
and the shortest wavelength associated with the
Balmer series (in nm).

7.106 Only a fraction of the electrical energy supplied to a
tungsten lightbulb is converted to visible light. The
rest of the energy shows up as infrared radiation (that
is, heat). A 75-W lightbulb converts 15.0 percent of
the energy supplied to it into visible light (assume the
wavelength to be 550 nm). How many photons are
emitted by the lightbulb per second? (1 W = 11J/s.)

7.107 Certain sunglasses have small crystals of silver chlo-
ride (AgCl) incorporated in the lenses. When the
lenses are exposed to light of the appropriate wave-
length, the following reaction occurs:

AgCl—> Ag + Cl
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The Ag atoms formed produce a uniform gray color
that reduces the glare. If AH for the preceding reac-
tion is 248 kJ/mol, calculate the maximum wave-
length of light that can induce this process.

7.108 The He" ion contains only one electron and is there-
fore a hydrogenlike ion. Calculate the wavelengths, in
increasing order, of the first four transitions in the
Balmer series of the He" ion. Compare these wave-
lengths with the same transitions in a H atom. Com-
ment on the differences. (The Rydberg constant for
He' is8.72 X 107'* 1)

7.109 Ozone (O5) in the stratosphere absorbs the harmful ra-
diation from the sun by undergoing decomposition:
0; —> O + 0,. (a) Referring to Table 6.3, calculate
the AHP® for this process. (b) Calculate the maximum
wavelength of photons (in nm) that possess this energy
to cause the decomposition of ozone photochemically.

7.110 The retina of a human eye can detect light when radi-
ant energy incident on it is at least 4.0 X 10~"7 J. For
light of 600-nm wavelength, how many photons does
this correspond to?

7.111 An electron in an excited state in a hydrogen atom can
return to the ground state in two different ways: (a) via
a direct transition in which a photon of wavelength X,
is emitted and (b) via an intermediate excited state
reached by the emission of a photon of wavelength A,.
This intermediate excited state then decays to the
ground state by emitting another photon of wavelength
A3. Derive an equation that relates A; to A, and A5.

7.112 A photoelectric experiment was performed by sepa-
rately shining a laser at 450 nm (blue light) and a laser
at 560 nm (yellow light) on a clean metal surface and
measuring the number and kinetic energy of the
ejected electrons. Which light would generate more
electrons? Which light would eject electrons with
greater Kinetic energy? Assume that the same amount
of energy is delivered to the metal surface by each
laser and that the frequencies of the laser lights exceed
the threshold frequency.

7.113 Draw the shapes (boundary surfaces) of the following
orbitals: (a) 2p,, (b) 3dz, (c) 3d,> 2. (Show coordi-
nate axes in your sketches.)

7.114 The electron configurations described in this chapter
all refer to gaseous atoms in their ground states. An
atom may absorb a quantum of energy and promote
one of its electrons to a higher-energy orbital. When
this happens, we say that the atom is in an excited
state. The electron configurations of some excited
atoms are given. Identify these atoms and write their
ground-state configurations:

(a) 1s'2s!

(b) 1s%25%2p*3d"
(c) 15°25%2p%4s’
(d) [Ar)4s'3d'04p*
(¢) [Nel3s?3p*3d’
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7.115 Draw orbital diagrams for atoms with the following

electron configurations:

(a) 15°2s%2p°

(b) 15°2522p%35%3p*

(c) 15°25°2p%353p%4s?3d"

7.116 If Rutherford and his coworkers had used electrons in-
stead of alpha particles to probe the structure of the
nucleus as described in Section 2.2, what might
they have discovered?

7.117 Scientists have found interstellar hydrogen atoms with
quantum number 7 in the hundreds. Calculate the
wavelength of light emitted when a hydrogen atom
undergoes a transition from n = 236 to n = 235. In
what region of the electromagnetic spectrum does this
wavelength fall?

7.118 Calculate the wavelength of a helium atom whose
speed is equal to the root-mean-square speed at
20°C.

7.119 Ionization energy is the minimum energy required to
remove an electron from an atom. It is usually ex-
pressed in units of kJ/mol, that is, the energy in kilo-
joules required to remove one mole of electrons from
one mole of atoms. (a) Calculate the ionization energy
for the hydrogen atom. (b) Repeat the calculation, as-
suming in this second case that the electrons are re-
moved from the n = 2 state.

7.120 An electron in a hydrogen atom is excited from the
ground state to the n = 4 state. Comment on the cor-
rectness of the following statements (true or false).

(a) n = 4 is the first excited state.

(b) It takes more energy to ionize (remove) the
electron from n = 4 than from the ground state.

(c) The electron is farther from the nucleus (on
average) in n = 4 than in the ground state.

(d) The wavelength of light emitted when the
electron drops fromn = 4 ton = 1 is longer
than that fromn = 4 ton = 2.

(e) The wavelength the atom absorbs in going from
n = 1ton = 4 is the same as that emitted as it
goes fromn = 4ton = 1.

7.121 The ionization energy of a certain element is 412 kJ/mol
(see Problem 7.119). However, when the atoms of
this element are in the first excited state, the ioniza-
tion energy is only 126 kJ/mol. Based on this infor-
mation, calculate the wavelength of light emitted in a
transition from the first excited state to the ground
state,

7.122 Alveoli are the tiny sacs of air in the lungs (see Prob-
lem 5.132) whose average diameteris 5.0 X 10~ 5 m.
Consider an oxygen molecule (5.3 X 10~ 2% kg)
trapped within a sac. Calculate the uncertainty in the
velocity of the oxygen molecule. (Hint: The maxi-
mum uncertainty in the position of the molecule is
given by the diameter of the sac.)

7.123 How many photons at 660 nm must be absorbed to
melt 5.0 X 10? g of ice? On average, how many H,0
molecules does one photon convert from ice to water?
(Hinz: 1t takes 334 J to melt | g of ice at 0°C.)

7.124 Shown below are portions of orbital diagrams repre-
senting the ground-state electron configurations of
certain elements. Which of them violate the Pauli ex-
clusion principle? Hund’s rule?

(L) (IN[Y] (TN

(@ (b) (©

WLt AT

(d (e)

(N[N U]
®

7.125 The UV light that is responsible for tanning the skin falls
in the 320- to 400-nm region. Calculate the total energy
(in joules) absorbed by a person exposed to this radia-
tion for 2.0 h, given that there are 2.0 X 10'® photons
hitting Earth’s surface per square centimeter per second
over & 80-nm (320 nm to 400 nm) range and that the ex-
posed body area is 0.45 m?. Assume that only half of the
radiation is absorbed and the other half is reflected by
the body. (Hint: Use an average wavelength of 360 nm
in calculating the energy of a photon.)

7.126 The sun is surrounded by a white circle of gaseous ma-
terial called the corona, which becomes visible during a
total eclipse of the sun. The temperature of the corona is
in the millions of degrees Celsius, which is high enough
to break up molecules and remove some or all of the
electrons from atoms. One way astronomers have been
able to estimate the temperature of the corona is by
studying the emission lines of ions of certain elements.
For example, the emission spectrum of Fe'** ions has
been recorded and analyzed. Knowing that it takes
3.5 X 10* kJ/mol to convert Fe'>* to Fe'**, estimate
the temperature of the sun’s corona. (Hint: The average
kinetic energy of one mole of a gas is 3RT.)

7.127 In 1996 physicists created an anti-atom of hydrogen.
In such an atom, which is the antimatter equivalent of
an ordinary atom, the electrical charges of all the com-
ponent particles are reversed. Thus, the nucleus of an
anti-atom is made of an anti-proton, which has the
same mass as a proton but bears a negative charge,
while the electron is replaced by an anti-electron (also
called positron) with the same mass as an electron, but
bearing a positive charge. Would you expect the en-
ergy levels, emission spectra, and atomic orbitals of
an antihydrogen atom to be different from those of a
hydrogen atom? What would happen if an anti-atom
of hydrogen collided with a hydrogen atom?




7.128 Use Equation (5.16) to calculate the de Broglie wave-
length of a N, molecule at 300 K.

7.129 When an electron makes a transition between energy
levels of a hydrogen atom, there are no restrictions on
the initial and final values of the principal quantum
number n. However, there is a quantum mechanical
rule that restricts the initial and final values of the or-
bital angular momentum €. This is the selection rule,
which states that A¢ = *1, that is, in a transition, the
value of € can only increase or decrease by one.
According to this rule, which of the following
transitions are allowed: (a) 1s = 2s, (b) 2p — 15,
(c) 1s — 3d, (d) 3d — 4f, (e) 4d — 35?

7.130 In an electron microscope, electrons are accelerated
by passing them through a voltage difference. The ki-
netic energy thus acquired by the electrons is equal to
the voltage times the charge on the electron. Thus, a
voltage difference of 1 volt imparts a kinetic energy of
1.602 X 10~ '° volt-coulomb or 1.602 x 10~ J.
Calculate the wavelength associated with electrons
accelerated by 5.00 X 10 volts.

Special Problems

7.134 For hydrogenlike ions, that is, ions containing only
one electron, Equation (7.5) is modified as follows:
E, = —RuZ*(1/n*), where Z is the atomic number of
the parent atom. The figure here represents the emis-
sion spectrum of such a hydrogenlike ion in the gas
phase. All the lines result from the electronic
transitions from the excited states to the n = 2 state.
(a) What electronic transitions correspond to lines B
and C? (b) If the wavelength of line C is 27.1 nm, cal-
culate the wavelengths of lines A and B. (c) Calculate
the energy needed to remove the electron from the ion
in the n = 4 state. (d) What is the physical signifi-
cance of the continuum?

I C B A
A

7.135 When two atoms collide, some of their kinetic energy
may be converted into electronic energy in one or both
atoms. If the average kinetic energy is about equal to
the energy for some allowed electronic transition, an
appreciable number of atoms can absorb enough en-
ergy through an inelastic collision to be raised to an

Continuum
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7.131 A microwave oven operating at 1.22 X 10® nm is
used to heat 150 mL of water (roughly the volume of
a tea cup) from 20°C to 100°C. Calculate the number
of photons needed if 92.0 percent of microwave en-
ergy is converted to the thermal energy of water.

7.132 The radioactive Co-60 isotope is used in nuclear med-
icine to treat certain types of cancer. Calculate the
wavelength and frequency of an emitted gamma parti-
cle having the energy of 1.29 X 10'' J/mol.

7.133 (a) An electron in the ground state of the hydrogen
atom moves at an average speed of 5 X 10° m/s. If
the speed is known to an uncertainty of 1 percent,
what is the uncertainty in knowing its position?
Given that the radius of the hydrogen atom in the
ground state is 5.29 X 10~ '' m, comment on your
result. The mass of an electron is 9.1094 X 10> kg.
(b) A 0.15-kg baseball thrown at 100 mph has a
momentum of 6.7 kg-m/s. If the uncertainty in
measuring the momentum is 1.0 X 10~ of the mo-
mentum, calculate the uncertainty in the baseball’s
position.

excited electronic state. (a) Calculate the average
kinetic energy per atom in a gas sample at 298 K.
(b) Calculate the energy difference betweenthe n = 1
and n = 2 levels in hydrogen. (c) At what temperature
is it possible to excite a hydrogen atom from the
n = 1level ton = 2 level by collision? [The average
kinetic energy of 1 mole of an ideal gas is (3)RT].

7.136 Calculate the energies needed to remove an electron
from the n = 1 state and the n = 5 state in the Li**
ion. What is the wavelength (in nm) of the emitted
photon in a transition from n = 5 to n = 1? The
Rydberg constant for hydrogen-like ions is
(2.18 X 107 '8 5)Z?, where Z is the atomic number.

7.137 According to Einstein’s special theory of relativity,
the mass of a moving particle, Mpeving. is related to its
mass at Test, My, by the following equation

Myest

Mpoving = —F———
'moving uz
1-1-=

C

where u and c are the speeds of the particle and light,
respectively. (a) In particle accelerators, protons,
electrons, and other charged particles are often ac-
celerated to speeds close to the speed of light. Calcu-
late the wavelength (in nm) of a proton moving at
50.0 percent the speed of light. The mass of a proton
is 1.673 X 10~ 2" kg. (b) Calculate the mass of a
6.0 X 10~ ?kg tennis ball moving at 63 m/s. Com-
ment on your results.
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7.138 The mathematical equation for studying the photo-

electric effect is

=W+ %meu2
where v is the frequency of light shining on the metal,
Wis the energy needed to remove an electron from the
metal [same as BE in Equation (7.4)}, m. and u are the
mass and speed of the ejected electron. In an experi-
ment, a student found that a maximum wavelength of
351 nm is needed to just dislodge electrons from a
zinc metal surface. Calculate the velocity (in m/s) of
an ejected electron when she employed light with a
wavelength of 313 nm.

7.139 In the beginning of the twentieth century, some sci-

entists thought that a nucleus may contain both elec-
trons and protons. Use the Heisenberg uncertainty
principle to show that an electron cannot be con-
fined within a nucleus. Repeat the calculation for a
proton. Comment on your results. Assume the ra-
dius of a nucleus to be 1.0 X 10~ '* m. The masses
of an electron and a proton are 9.109 X 107 *' kg
and 1.673 X 10~ %7 kg, respectively. (Hint: Treat
the radius of the nucleus as the uncertainty in position.)

7.140 Blackbody radiation is the term used to describe the

dependence of the radiation energy emitted by an

Answers to Practice Exercises

7.1625Hz. 7.2824m. 7.33.39 X 10°nm. 7.42.63 X -
10°nm. 75566 nm. 7.6n=3,€ = 1,mg= —1,0,1.
7.716. 78(5,1, -1, +3),(5, 1,0, +5), (5,1, 1, +3),
5,1,—-1,-9,(5,1,0, -9, (5, 1,1, =%). 7.9 32.
7.10(1,0,0, +3),(1,0,0, —3),(2,0,0, +3),(2,0,0, =),
(2,1, —1, —3). There are 5 other acceptable ways to write
the quantum numbers for the last electron. 7.11 [Ne]3s23p3.

object on wavelength at a certain temperature. Planck
proposed the quantum theory to account for this
dependence. Shown in the figure is a plot of the radia-
tion energy emitted by our sun versus wavelength.
This curve is characteristic of objects at about 6000 K,
which is the temperature at the surface of the sun. Ata
higher temperature, the curve has a similar shape but the
maximum will shift to a shorter wavelength. (a) What
does this curve reveal about two consequences of
great biological significance on Earth? (b) How are
astronomers able to determine the temperature at the
surface of stars in general?

Solar radiation energy



Fraunhofer's original drawing, in 1814,
showing the dark absorption lines in the
sun’s emission spectrum. The top of the
diagram shows the overall brightness of
the sun at different colors.
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CHEMICAL

Mystery

Discovery of Helium and the Rise
and Fall of Coronium

cientists know that our sun and other stars contain certain elements. How was this infor-
mation obtained?

In the early nineteenth century, the German physicist Josef Fraunhofer studied the emission
spectrum of the sun and noticed certain dark lines at specific wavelengths. We interpret the appear-
ance of these lines by supposing that originally a continuous band of color was radiated and that,
as the emitted light moves outward from the sun, some of the radiation is reabsorbed at those
wavelengths by the atoms in space. These dark lines are therefore absorption lines. For atoms,
the emission and absorption of light occur at the same wavelengths. By matching the absorption
lines in the emission spectra of a star with the emission spectra of known elements in the labo-
ratory, scientists have been able to deduce the types of elements present in the star.

Another way to study the sun spectroscopically is during its eclipse. In 1868 the French
physicist Pierre Janssen observed a bright yellow line (see Figure 7.8) in the emission spec-
trum of the sun’s corona during the totality of the eclipse. (The corona is the pearly white crown
of light visible around the sun during a total eclipse.) This line did not match the emission lines
of known elements, but did match one of the dark lines in the spectrum sketched by Fraunhofer.
The name helium (from Helios, the sun god in Greek mythology) was given to the element
responsible for the emission line. Twenty-seven years later, helium was discovered on Earth by
the British chemist William Ramsay in a mineral of uranium. On Earth, the only source of
helium is through radioactive decay processes—a particles emitted during nuclear decay are
eventually converted to helium atoms.




The search for new elements from the sun did not end with helium. Around the time of
Janssen’s work, scientists also detected a bright green line in the spectrum from the corona. They
did not know the identity of the element giving rise to the line, so they called it coronium because
it was only found in the corona. Over the following years, additional mystery coronal emission
lines were found. The coronium problem proved much harder to solve than the helium case
because no matchings were found with the emission lines of known elements. It was not until
the late 1930s that the Swedish physicist Bengt Edlén identified these lines as coming from
partially ionized atoms of iron, calcium, and nickel. At very high temperatures (over a million
degrees Celsius), many atoms become ionized by losing one or more electrons. Therefore, the
mystery emission lines come from the resulting ions of the metals and not from a new element.
So, after some 70 years the coronium problem was finally solved. There is no such element as
coronium after all!

Chemical Clues
1. Sketch a two-energy-level system (E; and E,) to illustrate the absorption and emission
processes.

2. Explain why the sun’s spectrum provides only absorption lines (the dark lines), whereas
the corona spectrum provides only emission lines.

Why is it difficult to detect helium on Earth?
How are scientists able to determine the abundances of elements in stars?

Knowing the identity of an ion of an element giving rise to a coronal emission line,
describe in qualitative terms how you can estimate the temperature of the corona.

During the total eclipse of the sun, which
lasts for only a few seconds, the corona
becomes visible.
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